Analysis of Robotic Control Policies Learned
by Deep Reinforcement Learning Networks

Yuchun (Peggy) Wang*, Chuanyu Yang', Kai Yuan®, Zhibin Lif
*Department of Computer Science, Stanford University
{peggyyuchunwang} @cs.stanford.edu
School of Informatics, University of Edinburgh
{chuanyu.yang, kai.yuan, zhibin.li} @ed.ac.uk

Abstract—Deep reinforcement learning policies have the
potential to be applied to real world robotic systems.
However, because of the ”black box” nature of deep
neural networks, researchers do not understand how the
control policies are generated. We conducted a systematic
analysis on a 2D humanoid robot agent that was trained
to balance using a deep reinforcement learning policy.
We show that the learned control policy generates an
adaptable control policy for the foot tilting height, the
policy switches between different control policies based the
current phase, and that the policy is able to be modeled as
affine functions with different parameters. We can then use
these results to reverse engineer how the neural network
was able to generate these control policies, allowing for
future applications of deep reinforcement learning on real
world systems.

I. INTRODUCTION

A. Background

Advances in the area of deep reinforcement learning
(DRL) have led to artificial intelligent agents achieving
or surpassing human level performance, especially in
the areas of game playing, such as Atari [I] and Go
[2]. Moreover, DRL has been applied to the area of
continuous action spaces, such as finding control policies
for simulated physics tasks, including legged locomotion
[3] [4]. However, there are very few examples of transfer-
ring control policies learned from DRL into the physical
world outside of simulation environments. Applying
DRL control policies to real world robotic controls is
particularly useful, since it will be more efficient than
manually programming and tuning classical controls.

Before implementing DRL control policies on real
world robots, it is imperative to understand how the
deep neural networks (NN) actually compute the control
policies. Historically, NN are considered “black box”
methods because it is not immediately clear how the
trained NN generates the correct (or incorrect) output
from an input [5].

We are unable to understand and improve the system
if the policy and actions of the agent are not explainable.
Preventable dangerous situations, such as when humans
are injured by an autonomous robot based on its policy,
would occur. Research which attempts to explain how
NN thinks, such as Olah et al.’s visualization technique,
has been done in the area for image processing [0] [7].
However, to the best of our knowledge, no research
has been done in the area of understanding how NN
in DRL generates robotic control policies. Therefore, it
is of great interest to analyze what control policies the
NN generates, how the NN generate control policies,
and how the performance of these policies compare to
classical control policies.

Ve h"'n(‘.l'uis

®

Fig. 1: Depiction of the humanoid character. (a) Side
view of 2D humanoid and the Valkyrie robot. (b) State
features. Figure courtesy of Yang, Komura, and Li [8].

B. Related Work and Motivation

Yang, Komura, and Li [8] have used the Deep De-
terministic Policy Gradient (DDPG) algorithm [9] to
train a bipedal humanoid robot to balance in an OpenAl
2D physics simulation environment. The humanoid was

modeled on the Valkyrie robot (shown in Fig. 1). State
features with data from the kinematics and dynamics
of humanoid were logged. Features include the pelvis
angle and angular velocity, torso angle, and center of
mass (COM) position and velocity. The reward function
is then given as a linear combination of state features.

The robot was pushed with a horizontal force for 0.1s
from the pelvis. A control policy learned by DDPG was
then applied on the joint angles for the humanoid push
recovery balance. The optimal joint angles for balancing
is learned by the high-level NN controller, and a low-
level Proportional Derivative (PD) controller is used to
translate the desired joint angles from the the high-level
controller into the joint torque.

Human-like behaviors such as foot tilting, knee lock,
and heel/toe tipping behaviors naturally occurred as a
result of the policy that the deep NN learned [8], even
though the reward function and code did not explicitly
encourage these behaviors. We are interested in finding
out how these behaviors emerge from the NN control
policy, how the NN implements these policies, and the
comparison of the NN control policy to classical control
policies, human control policies, and optimal control
policies.

C. Organization

This work presents a systematic analysis of a con-
trol policy learned by a DRL humanoid robotic agent
[8]. This paper is organized as follows. Introduction,
background, and related work is described in Section I.
Methodology of the experiment is described in Section
II. Data analysis of the results is described in Section III,
followed by the future work in Section IV and conclusion
in Section V.

II. METHODOLOGY
A. Simulation Data Collection

This work builds on the OpenAl physics simulation
environment that Yang, Komura, and Li [8] developed.
The simulation is deterministic for each force unit and
lasts for 10 seconds. Starting from five seconds, the
humanoid is pushed at a constant given horizontal force
at the pelvis for 0.1s. The humanoid then attempts to
rebalance itself based on the learned control policy using
the DDPG algorithm. We made modifications to Yang,
Komura, and Li’s code that includes logging the force
in each simulation and the ability to change the force
applied in the command line before the simulation. We
then wrote scripts to log and consolidate the data, which
is saved in a .mat file. Afterwards, we ran trials where
the humanoid is pushed from forces of —670N to 700N,

in increments of 10N. Positive forces meant the robot
was pushed horizontally from the back of the pelvis,
and negative forces meant that the robot was pushed
horizontally from the front of the pelvis. If the force is
lower than —670N or higher than 700N, the robot falls.

Examples of data collected included the amount of
force pushed, center of mass (COM) position and ve-
locity, and foot position and velocity for each time step.
The foot position and velocity was based on the COM of
the foot joint. The data was sampled at a rate of 500Hz.
Since the foot was 0.111m from the ankle to the back and
0.189m from the ankle to the front, we normalized the
data by analyzing the force from —400N to 700N based
on the foot front and back ratios. We then calculated the
COM acceleration by deriving the velocities with respect
to time. Lastly, we applied a moving average filter with
a window size of 15Hz to the acceleration.

B. Systematic Data Analysis

We then performed a systematic data analysis on the
learned control policy using Matlab. Results for the
analysis can be found in Section III. We defined foot
tilting behavior as occurring if the maximum foot height
difference is above 0.005m. We categorized the data
into positive and negative forces, as well as foot tilting
and non-foot tilting behaviors. Five different phases best
described the plot: initial push, foot tilting up, foot
tilt maximum height, foot tilt down, and settling. The
separation of the phases were based on four points: time
when push stopped, time of foot maximum height minus
0.002m, time of foot maximum height plus 0.002m, and
time of foot reaching starting height after maximum
height.

Each separate phase can be described as a different
2D affine function of the form

fcom = Axcom + Bicom +C)

where oo 1s the desired COM horizontal acceleration
and where A, B, and C are parameters describing the
best fit affine function based on the amount of force
applied and phase. zcoas is the horizontal position of
the center of mass, and ooy is the horizontal velocity
of the center of mass. We compared the predicted COM
horizontal acceleration of the affine function with the
actual COM horizontal acceleration from data.

Scripts for the data collection and analysis may be
found at https://github.com/Peggy YuchunWang/Controls
AnalyzationDeepRL.

Normalized Force vs. Max Foot Tilting Height
T T T T

m)

Max Foot Tilting Height (

0.005 /
\. /
0 7
0,005
-600 -400 -200 0 200 400 600 800

Force (N)

Fig. 2: Force vs. Max Foot Tilt Height

III. RESULTS
A. Overview

After analysis, we have determined that the humanoid
uses a variety of strategies for its balancing control
policy. This control policy can be described as:

fcom = af(p) + Bg(u) + vh(n) 2)

where Zcoar 18 the desired COM horizontal acceler-
ation, p is the center of pressure of the foot, u is
angular momentum of the robot, and 7 is the foot tilt
height. Functions f, g, and h output the desired COM
acceleration based on the variable inputs. «, 3, and y are
weighted parameters that describe proportionally how
much each function contributes to the desired COM
acceleration.

We found that positive and negative forces of the same
magnitude exhibited similar behavior. Forces that result
in foot tilting behavior had different control policies than
forces that do not result in foot tilting behavior. We show
a full systematic analysis for the 400N scenario, which
includes foot tilting behavior, but these results can be
generalized to any other force.

B. Adaptable Policy for Maximum Foot Tilt Height

We have also determined that the humanoid applies
some control policy to determine the maximum foot
tilting height in order to dissipate the force of the push
(Fig. 2). The robot varies the maximum foot tilting
height based on the amount of force applied and does
not always deterministically perform the same maximum
foot tilting height for each force. This means that the
deep neural network is able to generalize an adaptive
control policy based on different dynamical states.

20 X 102 Foot y Position, Velocity, Acceleration after push
T T T T 7 T T T
£ d‘“\s\ Push Done
S / O Foot Tilt Max Height
10/ \ O Tilt Plateau
3 / \ Tilt Done
o /
>
NV ‘ L
5 52 54 56 58 6 6.2 6.4 66 6.8 7
Time (s)
05 T
2
£ o
z o/
3 o ¢
]
>
05 L L
5 52 5.4 56 58 6 6.2 6.4 66 6.8 7
Time (s)
< T
©
£ 200
S o~
s
S 200 -
°
8
< -400
5 5.2 54 56 58 6 6.2 6.4 6.6 6.8 7
Time (s)

(a) Foot Height vs. Time

COM x Position, Velocity, ion after push
T T T T T T T T
e R Push Done

0.02 -
/ O Foot Tilt Max Height

O Foot Tilt Max Plateau
Tilt Done

COM x Position (m)
)
e
T

5 5.2 54 56 58 6 6.2 6.4 6.6 6.8 7
Time (s)

Velocity (m/s)

Acceleration (m/s?)

(b) COM Horizontal Position, Velocity, Acceleration

Fig. 3: 400N foot height and COM position, with defined
points showing five different phases

C. COM Acceleration Policy

We constructed a model of the COM horizontal ac-
celeration as follows for forces that caused foot tilt-
ing behavior. We segmented the control policy in five
different phases respectively: initial push, foot tilt up,
foot tilt maximum height, foot tilt down, and settling.
If no foot tilting behavior occurred, the control policy
is modeled as two different phases respectively: initial
push and settling phase.

After analysis, we found that the different phases of
the COM acceleration control likely depends on the stage
of the foot tilting heights. As seen in Fig. 3, points
described in Section II corresponding to the state of the
foot heights were used. Therefore, the humanoid uses

Phase Plot for COM

Push

Foot Tilt
Tilt Plateau
Foot Down
Settle

Acceleration (m/s?)

2]
0.2

0.03
01 0.025
0.02
0015
0 0.01
0.005

Velocity (m/s) 0.1 -0.005 Position (m)

(a) COM Horizontal Phase Plot

Phase Plot for COM

Push
Foot Tilt

251 Tilt Plateau
Foot Down
Settle

Acceleration (m/s?)

Velocity (m/s)

(c) COM Horizontal Velocity vs. Acceleration

Phase Plot for COM

Push

Foot Tilt
Tilt Plateau
Foot Down
Settle

0.05 [

Velocity (m/s)
o

-0.05

041k

045 ,
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
Position (m)

(b) COM Horizontal Position vs. Velocity

Phase Plot for COM

Push

Foot Tilt
25 Tilt Plateau
Foot Down
Settle

Acceleration (m/s?)
o
8 N
:

)
T

S
o
T

gLk

15 I I I I I . ,
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
Position (m)

(d) COM Horizontal Position vs. Acceleration

Fig. 4: 400N phase plots showing COM acceleration given COM position and velocity

some mechanism to switch between different control
policies based on the realization of the phase it is in
(Fig. 4).

D. Affine Function Fits

The horizontal COM acceleration was able to be
predicted by the affine function closely, with an average
root mean squared error of 2.934. We have shown
comparisons of the original horizontal COM acceleration
calculated from the data collected with the predicted
acceleration from the affine functions in Fig. 5. Since
we are able to model the control policy generated by the
DRL, we are able reverse engineer how the NN thinks
based on the policy.

IV. FUTURE WORK

We have successfully shown that the robot applies
explainable adaptable control policies to its COM accel-
eration. It would yield more insights to isolate the COM
acceleration of the control policy from the gravitational
acceleration to show only the acceleration that the con-
troller generates. If we model the humanoid as a linear
inverted pendulum or another model of underactuated
control, we could subtract the gravitational acceleration
of the model from the total COM acceleration.

Additionally, it would be interesting to do additional
research on how the robot determines its state and what
mechanism it uses to switch between control policies.
We could also compare the performance of the deep NN
control policy with alternative control policies, including

Foot Tilt Up Phase Error

— —— Original
08
\ Affine Fit

061 '\

04

02

Acceleration (m/s?)

5.09 5.1 511 5.12 5.13 5.14 5.15 5.16
Time (s)

(a) Foot Tilt Up Phase Affine Fit

Foot Tilt Down Phase Error

Original Data
Affine Fit

Acceleration (m/s?)

5.26 5.28 53 5.32 5.34 5.36 5.38 5.4
Time (s)

(c) Settle Phase Affine Fit

Foot Tilt Max Height Phase Error

A1
[
|
0 / i
/ |
i
|
A / | A~ “ |
< 02 - I 7~ \ ||
£ g | 72N\ [
5 | F\ [
. | | [
° 1 \ |
8 | \ N\ |
<06 ‘\‘ | \ N\ |
| VN
| [
08| |l \ |
| o
(] \
Lt \
1 | \J
\|
\/
\
» \
5.16 517 5.18 5.19 52 521 5.22 5.23 5.24

Time (s)
(b) Foot Tilt Down Phase Affine Fit

Settle Phase Error
25 T T T

Acceleration (m/s?)

5.8 6 6.2 6.4 6.6 6.8 7
Time (s)

(d) Foot Tilt Down Phase Affine Fit

Fig. 5: Different Phases of 400N Affine Function Fits Compared to Original Data

control policies that humans use for push recovery
balance, additional classical control policies, and the op-
timal control policy. Eventually, we hope to test policies
learned by neural networks on physical robots, including
the Valkyrie robot.

V. CONCLUSION

By using machine learning methods such as DRL, we
are able to generate control policies without requiring
a control engineer to manually tune the controller. As
shown in this work, these policies can be explained by
modeling them as adaptive control policies for different
phases.

We can see that using machine learning for developing
control policies has many applications in the robotics
industry, especially since it is very time-intensive to
manually design control policies for many different areas
of the robot. With machine learning methods, we could
become much more efficient at building controllers while

keeping the same level of performance, if not surpassing
them. Therefore, we may soon be seeing humanoid
robots which would operate biomechanically similar to
actual humans.

ACKNOWLEDGMENT

Many thanks to Dr. Zhibin Li and the Advanced
Robotics Lab of the University of Edinburgh for advising
and hosting us throughout this project. Additionally,
thanks to graduate student mentors Chuanyu Yang and
Kai Yuan for their help and insight. Additionally, thanks
to Dr. Mykel Kochenderfer and Rachael Tompa of
Stanford University for their advising and help. Thanks
also to the Stanford University Bing Overseas Program
(BOSP) for organization of this overseas seminar and
Research Project.

(1]

[7]

REFERENCES

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al.,
“Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, 2015.
D. Silver, J. Schrittwieser, K. Simonyan, I
Antonoglou, A. Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, et al., “Mastering the
game of go without human knowledge,” Nature,
vol. 550, no. 7676, p. 354, 2017.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Con-
tinuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

X. B. Peng, G. Berseth, K. Yin, and M. Van
De Panne, “Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning,”
ACM Transactions on Graphics (TOG), vol. 36,
no. 4, p. 41, 2017.

D. Castelvecchi, “Can we open the black box of
ai?” Nature News, vol. 538, no. 7623, p. 20, 2016.
C. Olah, A. Mordvintsev, and L. Schubert,
“Feature visualization,” Distill, 2017,
https://distill.pub/2017/feature-visualization.

DOI: 10.23915/distill.00007.

C. Olah, A. Satyanarayan, I. Johnson, S. Carter,
L. Schubert, K. Ye, and A. Mordvintsev, “The
building blocks of interpretability,” Distill, 2018,
https://distill.pub/2018/building-blocks. DOI: 10 .
23915/distill.00010.

C. Yang, T. Komura, and Z. Li, “Emergence of
human-comparable balancing behaviours by deep
reinforcement learning,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics
(Humanoids), Nov. 2017, pp. 372-377. porL: 10.
1109/HUMANOIDS.2017.8246900.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wier-
stra, and M. Riedmiller, “Deterministic policy gra-
dient algorithms,” in International Conference on
Machine Learning (ICML), 2014.

https://doi.org/10.23915/distill.00007
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010
https://doi.org/10.1109/HUMANOIDS.2017.8246900
https://doi.org/10.1109/HUMANOIDS.2017.8246900

	Introduction
	Background
	Related Work and Motivation
	Organization

	Methodology
	Simulation Data Collection
	Systematic Data Analysis

	Results
	Overview
	Adaptable Policy for Maximum Foot Tilt Height
	COM Acceleration Policy
	Affine Function Fits

	Future Work
	Conclusion

