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Abstract

Semantic segmentation is important for autonomous
driving scenarios, since it provides accurate road informa-
tion for the vehicle to use for navigation and planning. Re-
cently, multi-head self-attention, a method widely adopted
in the Natural Language Processing community, has been
shown to make significant improvements in prediction when
augmented with Convolutional Neural Networks. We ex-
plore the use of multi-head self-attention to augment pop-
ular Convolutional Neural Network architectures, such as
FCN and DeepLab, trained on the Mapillary Vistas dataset
for street-level semantic segmentation. After 40,000 itera-
tions each, we were able to reach a mean IoU of 21.75%
for FCNs, 25.30% for FCNs with attention, 16.05% for
DeepLab3+, and a 13.53% for DeepLab3+ with attention.
Since we have comparable results and slight improvements
in metrics for attention-augmented models, we believe that
attention-augmented Convolutional Neural Networks have
the potential to improve the accuracy of semantic segmen-
tation. Our results warrants more investigation into the per-
formance of multi-head self-attention after training to con-
vergence on the Vistas dataset.

1. Introduction

The focus of this project is to explore improvements
to semantic segmentation methods for autonomous driving
scenarios. The problem of semantic segmentation is impor-
tant because self-driving cars use this information in order
to construct an accurate representation of the world around
them. For example, it provides information about where the
road is, exactly where obstacles and objects on or near the
road are located, and lane markings and traffic signs.

The input to our algorithm are street-view images. We
then use a Convolutional Neural Network (CNN) to output
a predicted segmentation map, consisting of an image of the
same number of pixels as the input image. Every pixel in

the output image will have a color representing one of the
classes in our training dataset.

Our approach is to take methods that have lead to steady
advancements in Natural Language Processing (NLP), such
as self-attention, and layer them over outputs of layers
within CNNs. We then ultimately integrate these attention-
augmented layers into state-of-the-art Deep CNN models
used for semantic segmentation (semseg).

Self-attention has been widely adopted in the NLP field
for its ability to capture long-range interactions and rela-
tionships between sequence segments. An example of this
is attention’s ability to learn the relationship between words
in a given sequence and then ensuring that a given transla-
tion of that sequence takes into account these long-range in-
teractions, preserving the original sequence’s meaning. For
this reason, self-attention is believed to have potential for
improving the modeling of long-range interactions between
image segments which should well complement convolu-
tions’ ability to capture localized image segment relation-
ships. Multi-head attention is an even more recent advance-
ment in the NLP field that allows for the training of mul-
tiple attention ”heads” which each carry out self-attention
over a given feature map. Each head is then able to learn
to capture unique interactions between input segments and
produces its own unique feature map.

We explore the use of multi-head self-attention to aug-
ment popular CNN architectures, such as Fully Convolu-
tional Networks (FCN) and DeepLab, trained on the Map-
illary Vistas dataset for street-level semantic segmenta-
tion. After training for 40,000 iterations for each model,
we reached a mean IoU of 21.75% for FCNs, 25.30%
for FCNs with attention, 16.05% for DeepLab3+, and a
13.53% for DeepLab3+ with attention. Based on our re-
sults, where models with attention reached comparable ac-
curacy or improved accuracy, we believe that attention-
augmented CNNs have the potential to improve the accu-
racy of semantic segmentation.
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2. Related Work

Related work that informed the structuring of this project
consist of experiments in three areas of research: explo-
ration of fully convolutional networks for semseg, the ap-
plication of atrous convolutions to deep convolutional net-
works, and the augmentation of convolutional networks
with attention.

2.1. Fully Convolutional Networks

Fully Convolutional Networks (FCNs) [17] were de-
scribed in application to semseg in a paper by Long, et al.
[13]. Long focused on the removal of linear layers from
convolutional networks and replaced them with deeper con-
volutional layers to produce heat maps as network outputs
instead of linear classifications. These heat maps repre-
sented a value for each pixel in the input image, its color
representing the corresponding pixel’s semantic labeling.

FCNs have also proven to be effective in image recogni-
tion [19], object detection [8], and medical image segmen-
tation [16], amongst other applications [21][11][22].

For all FCNs’ strengths, however, they exhibit weakness
that ultimately were corrected for in DeepLab architecures,
particularly with the aid atrous convolutions.

2.2. DeepLab and Atrous Convolutions

The state-of-the-art DeepLab model architecture was
first introduced in a paper by Chen, et al. [4]. The DeepLab
model was a deep convolutional neural network (DCNN)
model which employed a newly defined type of convolu-
tion, called an atrous convolution, that pushed the DeepLab
past the state-of-the-art of the time. An atrous convolution,
proposed in Holschneider, et al. [9], allows for a given ker-
nel in a convolution of size k× k to expand to an arbitrarily
large field of few larger than k × k while still maintain-
ing the number of parameters required for the correspond-
ing filter by replacing the ”holes” in the filter with zeros.
This method allows for increasing the field of view of a
given kernel without the computational penalty, the main-
taining of a large feature map for a given input image, and,
as demonstrated in [4], a significant performance gain over
other semseg models such as FCNs.

Since the first introduction of atrous convolutions into
DCNNs, many extensions of the DeepLab model have been
produced. The most recent iteration is DeepLab3+, outlined
in Chen, et al. [3], which differs largely from the origi-
nal DeepLab model in that it has been adapted to make use
of the advantages of encoder-decoder models. An encoder
is employed to capture rich contextual image information,
with quicker computation due to elimination of need for fea-
ture dilation, while a decoder is used to then recover image
object boundaries. The atrous convolutions, which charac-
terize the DeepLab architecture, are incorporated into the

encoder segment allowing for preserving of any arbitrary
resolution (limited by available computational and memory
restraints).

2.3. Attention and Augmented Convolutions

Attention has demonstrated high capability in modeling
long-range relationships in diverse applications of neural
networks, such as machine translation [20], wave-forming
[10], information retrieval [1], and more [6] [24] [23].

The 2017 paper by Vaswani, et al. [20] introduced a
particularly powerful attention technique called multi-head
attention which allow for the training of multiple atten-
tion ”heads” which each learn to capture unique interac-
tions between input segments using self-attention, produc-
ing unique feature maps for each head. A recent paper by
Bello et al. [2] demonstrated the potential performance ben-
efits of utilizing multi-head self-attention in applications of
image classification, developing a technique for combining
traditional convolutional layers with attention. Their exper-
iments showed that by augmenting powerful CNN models,
such as ResNet and SE-ResNet, with multi-head attention
layers, performance could be systematically improved for
image classification.

Based on these findings, along with attention’s clear rep-
resentational power demonstrated in the field of NLP, we
believe that multi-head attention likely is capable of pro-
ducing the same systematic improvements when added to
successful models in semantic segmentation, such as FCN
and DeepLab models.

3. Dataset

We utilized the Mapillary Vistas dataset for Semantic
Segmentation [14] which consists of 25,000 high-resolution
street-level images (at least 1920 × 1080 resolution) with
65 object categories. Images are taken from a wide range
of camera viewpoints, time of day, and weather. Our mo-
tivation for choosing this dataset is that Vistas is more di-
verse in geographic location, contains more classes, and has
more finely annotated images than the previous benchmark
dataset for semseg of street-level images, Cityscapes [7].

The Vistas dataset was segmented into three portions:
training, validation, and test sets. The training set consisted
of 18,000 images, the validation set consisted of 2000 im-
ages, and the test set consisted of 5000 images. The image
resolutions are varied, but all are at least 1920 × 1080. All
images were resampled to 512 × 1024 resolution for train-
ing and validation. We did not perform any data augmenta-
tion on the Vistas dataset. Examples of images in the Vistas
dataset is shown in Figure 1.



Figure 1: Example of four pairs of original images with cor-
responding, overlaid color-coded labels in Mapillary Vistas
dataset, as outlined in in [14].

4. Methods
The results of Bello, et al.[2] outlined how multi-head at-

tention could be adapted to operate over images, rather than
linear sequences, as inputs and built a strong case for its
potential value in pushing performance of CNN models in
applications outside of image classification. Based on these
findings, along with attention’s clear representational power
demonstrated in the field of NLP, we believe that multi-head
attention likely is capable of producing the same systematic
improvements when added to successful models in seman-
tic segmentation, such as FCN and DeepLab models.

4.1. Input/Output

For all models, input will be an RGB image of resolu-
tion 512 × 1024, modeled as a tensor of dimensions 512
× 1024 × 3, and output will be a segmentation map image
of dimensions 512 × 1024 × number of classes in training
dataset.

4.2. Baseline

Our baseline model consists of a Fully-Convolutional
Network (FCN) Implementation as described in [13]. FCN
models consist of the same standard structures present in
convolutional classification architecture, except that the
dense layer which is replaced with an additional series of

Figure 2: FCN Architecture, as outlined in [13]

sequential blocks consisting of only convolutional, pooling,
and upsampling layers.

Figure 2 illustrates the model architecture for FCN32,
16, and 8. The specific FCN architecture used for our base-
line model is the FCN8 architecture. This architecture con-
tinues from conv7 in a classification architecture, upsam-
ples 2x (with stride 2) and sums the output of conv7, car-
ries out pool4, upsamples 2x (with stride 2) and sums the
output of pool4, carries out pool3, and applies a final conv
layer (with stride 8) to produce the final output segmenta-
tion map.

4.3. Experiments

We trained a total of four models: FCN, FCN with at-
tention, DeepLab3+, and DeepLab3+ with attention. The
FCN was used as a baseline. We trained each model to
40,000 iterations, since training to convergence would take
more resources in Google Cloud GPU credits and training
time that we possessed given the deadline. We used two
Nvidia K80 GPUs and trained the models for a week and a
half consecutively. The optimizer we used was Stochastic
Gradient Descent (SGD) with Momentum. We also used a
cross-entropy loss function for all models. Details on the
implementation of each model are described below.

4.3.1 DeepLab3+

Our state of the art comparative model consists of an imple-
mentation of the DeepLab3+ network as described in Chen,
et al [3], the latest refinement of the DeepLab model archi-
tecture outlined in [4]. The DeepLab3+ model can be bro-
ken into 3 main segments: backbone, atrous spatial pyramid
pooling, and decoder.

The backbone and atrous spatial pyramid pooling
(ASPP) segments constitute the encoding segment of the
DeepLab3+ model.

The backbone used in Chen, et al. [3] is the xception
model, as described in [5], modified to include depthwise
seperable convolutions with striding instead of max pool-
ing, additional batch normalization and ReLU activate after
each 3 × 3 depthwise convolution, and atrous convolutions



Figure 3: DeepLab3+ Components and Overview, as out-
lined in [3]

Figure 4: Encoder-Decoder Configuration, as outlined in
[3]

at desired states to extract additional feature maps at desired
resolutions.

ASPP is a series of atrous convolutions applied on the
state output from the encoding bacbone. Atrous convolu-
tions allow for a given kernel in a convolution of size k ×
k to expand to an arbitrarily large field of few larger than
k × k while still maintaining the number of parameters re-
quired for the corresponding filter by replacing the ”holes”
in the filter with zeros. These specialized convolutions are
run from minimum to maximum size at the given state, as
is illustrated in part a of Figure 3, producing a full feature
map of equal size to the state operated over.

The ASPP segment consists of four atrous convolution
layers (ASPP1, ASPP2, ASPP3, ASPP4), each with input
filters = 2048 and output filters = 256. ASPP1 has a kernel
size of 1 and a dilation of 1. ASPP3, -4, and -5 all have
kernels of size 3 and have dilations of 6, 12, and 18, re-
spectively. ASPP1, -2, -3, and -4 are all run over X along
with globalAvgPooling (an AdaptiveAvgPooling2d pytorch
block). Outputs of these 5 blocks are then concatenated to-
gether to form a new feature map Xaspp. A final convolu-
tion, conv1 is then run over Xaspp with input filters = 1280,
output filters = 256, and kernel size = 1.

Architecture of the DeepLab3+ encoding segment
(aligned xception model and ASPP) is illustrated in the top
segment of Figure reffig:encoderdecoder, while decoding

Figure 5: Attention-Augmented Convolutional Block, as
outlined in [2]

segment is illustrated in the bottom half.
The low-level features output from the aligned xception

backbone, after 1 × 1 convolution, and the ASPP output,
bilinearly upsampled by a factor of 4, are then concate-
nated within the decoding segment. From there three 3 × 3
convolution-Batch Normalization-ReLU layers are applied
and then again bilinearly upsampled by a factor of 4 to pro-
duce the final desired segmentation map.

4.3.2 Attention-Augmented Convolution

For our applications, we implemented a specialized
attention-augmented convolution as first introduced in the
recent paper by Bello, et al. [2]. That paper outlined an
augmented convolution block that consists of both a con-
volution layer and a multi-head attention layer which are
carried out over a given input activation map and combined
to produce an output state of shape equal to that of the con-
volutional layer’s output.

Architecture of the Attention-Augmented Convolutional
(AugConv) block is outlined in Figure 5 but will also be
formally detailed here. Naming conventions here on out are
as follows: H , W , Fin, Fout refer to activation map height,
activation map width, convolution layer input filters, and
convolution layer output filters, respectively. Nh, dv , dk
refer to the number of attention heads, the depth of attention
head values, and the depth of both attention head keys and
queries, respectively. dhv , dhk refer to the depth of values and
keys/queries, respectively, for a given head h.

Given an input tensor of shape (H , W , Fin), we produce
a new tensor X of shape (H ×W , Fin) which allows us to
carry out multi-head attention (MHA) over X as detailed in
Vaswani, et al. [20]. As outlined in that paper, MHA for
head h can be formulated as:

Oh = Softmax
( (XWq)(XWk)

T√
dhk

)
(XWv) (1)

where Wq , Wk ∈ RFin×dh
k and Wv ∈ RFin×dh

v are learned
linear transformations mapping X to queries Q, keys K,
and values V for head h.



An additional linear projection is then carried out over
all heads, as follows:

MHA(X) = XWO (2)

where O1, ...ONh
are concatenated to form O and WO ∈

Rdv×dv . Then, MHA(x) is then reshaped from a tensor of
shape (H ×W , dv) into a tensor of shape (H , W , dv).

From there we then take the output MHA(X) and con-
catenate it with Conv(X), where Conv(X) is the output
of a convolution of input filters Fin, output filters Fout,
and kernel size k, along their third dimension to form
MHA+CONV(X). Lastly, a final convolution is run over
MHA+CONV(X) with input filters dv , output filters dv ,
and kernel size 1 to produce the output AugConv(X) with
shape (H , W , Fout).

4.3.3 Attention-Augmented FCN

For our Attention-Augmented FCN (AA FCN) model, Aug-
Conv blocks were used to replace all standard convolutional
layers in conv7 (defined in Section 4.2), incorporating in
attention right before the FCN classification layers. Each
convolutional layer in conv7 was replaced with an AugConv
layer with identical conv parameters (Fin, Fout = 512, ker-
nel size = 3), and the following MHA parameters: Nh = 4,
dv = 4, dk = 40, chosen to match the MHA parameters used
in Bello, et a. [2]. All AugConv blocks were made to fol-
low ReLU and Batch Normalization layers, as was done in
Bello, et a. [2], to allow, in theory, for the model to learn
which features, whether from MHA or from Conv, were of
greater value.

Conv7 was chosen as the best location for attention aug-
mentation due to memory restrictions that made attention
augmentation in all other purely convolutional blocks in-
feasible based on testing.

4.3.4 Attention-Augmented DeepLab

For our Attention-Augmented DeepLab (AA DeepLab),
AugConv blocks were used to replace all standard convo-
lutional (non-atrous) layers in the ASPP segment of the
DeepLab encoder, namely the GlobalAvgPooling block’s
pooling convolution and conv1 (defined in Section 4.3.1).
The GlobalAvgPooling block’s pooling convolution was re-
placed with an AugConv layer with identical conv param-
eters (Fin = 2048, Fout = 256, kernel size = 1), and the
following MHA parameters: Nh = 4, dv = 4, dk = 40, cho-
sen to match the MHA parameters used in Bello, et a. [2].
Conv1 was replaced with an AugConv layer with identical
conv parameters (Fin = 1280, Fout = 256, kernel size = 1),
and the following MHA parameters: Nh = 4, dv = 4, dk
= 40, also chosen to match the MHA parameters used in
Bello, et a. [2].

The ASPP encoding segment was chosen as the best lo-
cation for attention augmentation for two reasons: 1) mem-
ory restrictions made attention augmentation in the decod-
ing block infeasible based on testing, and 2) the xception
backbone used was pretrained and therefore decided best
left untouched due to time constraints.

4.4. Starter Code

We used and edited the FCN implementation in Pytorch
from [18], specifically editing the dataloader for the Mapil-
lary Vistas (Vistas) dataset and changing the cross-entropy
loss function. We used and edited the DeepLabV3-Plus im-
plementation in Pytorch from [25], again editing the dat-
aloader for the Vistas dataset, changing the cross-entropy
loss function and integrating the models into our codebase.
We used the Attention-Augmented Convolution block im-
plemented from Bello, et al. [2] as translated to PyTorch by
[12].

The FCN codebase was modified to incorporate
Attention-Augmented Convolutional blocks as specified in
Section 4.3.3. The DeepLab3+ codebase was modified to
incorporate Attention-Augmented Convolutional blocks as
specified in Section 4.3.4.

5. Results

5.1. Metrics and State of the Art Performance

We use common metrics in semantic segmentation such
as overall accuracy, mean accuracy, frequency weighted
(FreqW) accuracy, and mean intersection over union (IoU).
We use formulations given in Long et al. [13], redefined as
follows: let nij be the number of pixels of class i predicted
to belong to class j, where there are ncl different classes,
and let ti =

∑
j nij be the total number of pixels of class i.

We compute:

• Overall accuracy:
∑

i nii/
∑

i ti

• Mean accuracy: (1/ncl)
∑

i nii/ti

• Mean IoU: (1/ncl)
∑

i nii/(ti +
∑

j nji − nii)

• FreqW accuracy:
(
∑

k tk)
−1
∑

i tinii/(ti +
∑

j nji − nii)

The best performance on the Mapillary Vistas leader-
board across all models is currently a mean IoU metric of
53.37% 1. Since the Vistas leaderboard uses the mean IoU
as a point of comparison, we will hereafter mainly use the
mean IoU metric to compare performances between differ-
ent models.

1https://blog.mapillary.com/update/2018/01/11/new-benchmarks-for-
semantic-segmentation-models.html



FCN Hyperparameters
Name Value
Iterations 40,000
Batch Size 4
Validation Interval 1000
Optimizer SGD w/ Momentum
Learning Rate 1.0e-4
Weight Decay 0.0005
Momentum 0.99
Loss Type Cross-entropy

Table 1: FCN Hyperparameters Table

FCN Performance
Metric Name Baseline Attention
Overall Acc 0.829990 0.868064
Mean Acc 0.286447 0.304605
FreqW Acc 0.728482 0.780485
Mean IoU 0.217500 0.253031
Final Loss 0.4496 0.6804

Table 2: FCN Performance Table

(a) Original Image (b) Baseline Output

(c) Attention Output (d) Ground Truth

Figure 6: FCN Validation Image Example

5.2. FCN Results

We trained both our baseline FCN model and the
attention-augmented FCN model using the FCN8 architec-
ture for 40,000 iterations. Our hyperparameters are de-
scribed in Table 1. The results for our FCN models after
training is shown in Table 2. The metrics are evaluated on
our validation set, since the Vistas dataset does not provide
ground truth images for the test set. An example of our
baseline and attention model output compared with the orig-
inal image and ground truth semantic labeling in the valida-
tion set is shown in Figure 6.

The mean IoU of the FCN baseline was 21.75%, and
the mean IoU of the FCN with attention was 25.30%. We

DeepLab Hyperparameters
Name Value
Iterations 40,050
Batch Size 4
Validation Interval 4500
Optimizer SGD w/ Momentum
Learning Rate 0.01
Weight Decay 0.0005
Momentum 0.9
Loss Type Cross-entropy
Output Stride 16
Backbone Xception

Table 3: DeepLab Hyperparameters Table

DeepLab Performance
Metric Name DeepLab3+ Attention
Overall Acc 0.842424 0.832322
Mean Acc 0.202086 0.169805
FreqW Acc 0.740195 0.724240
Mean IoU 0.160526 0.135338
Final Loss 0.697 0.626

Table 4: DeepLab Performance Table

can see that our attention model as seen in Table 2 has
slightly better prediction accuracy according to all of our
metrics. However, we were not able to reach the mean IoU
of 53.37% of the best model on the Vistas dataset.

We believe we don’t see a significant difference and have
not reached the state of the art metric in performance be-
cause of training for a relatively low number of iterations
and lack of hyperparameter tuning. According to Porzi et
al., who used a model similar to DeepLab on the Vistas
dataset, their model trained for 192,000 iterations [15]. In
comparison, our models were trained for only 40,000 iter-
ations, which is a difference factor of 5. Also, due to time
restrictions we chose to utilize the same hyperparameters as
used on the Cityscapes dataset, which very well may not
have been the best for our models. If both FCN and FCN
with attention models were trained to convergence, we be-
lieve that FCN with attention would significantly outper-
form the baseline FCN.

We show a visualization of our predictions in Figure 6 in
how our FCN baseline and attention output compares to the
ground truth segmentation image.

5.3. DeepLab Results

We trained our DeepLab baseline using the DeepLab3+
architecture for 40,050 iterations. Our hyperparameters
are described in Table 3. The preliminary results for
DeepLab3+ and DeepLab3+ with attention after training is
shown in Table 4. An example of our DeepLab3+ output



(a) Original Image

(b) DeepLab Output

(c) Ground Truth

Figure 7: DeepLab Validation Image Example

compared with the original image and ground truth seman-
tic labeling in the validation set is shown in Figure 7. An
example of our DeepLab3+ with attention model compared
with the original image and ground truth semantic labeling
in the validation set is shown in Figure 8.

Our DeepLab model failed to outperform our FCN
model. The mean IoU for FCN is 21.75% while the mean
IoU for DeepLab is 16.05%. This could be due to the low
number of iterations trained for as DeepLab may need more
iterations to converge and perform at a higher accuracy rate.
Due to time restrictions, we chose to also to utilize the same
hyperparameters for DeepLab that were used for both FCN

(a) Original Image

(b) DeepLab with Attention Output

(c) Ground Truth

Figure 8: DeepLab with Attention Validation Image Exam-
ple

models. Lack of hyperparameter tuning could also be re-
sponsible for the lower performance of our DeepLab mod-
els, particularly with respect to the learning rate. If all
four models were trained to convergence, we believe that
DeepLab would outperform both FCN models and DeepLab
with attention will outperform DeepLab without attention.

DeepLab with attention (with a mean IoU of 13.51%)
did not outperform DeepLab (with a mean IoU of 16.06%).
However, the accuracy levels are 3% apart and are com-
parable in terms of performance. This may be due to the
low number of training iterations and lack of hyperparam-



eter tuning. We believe if the models were trained to con-
vergence at over 192,000 iterations, as done in Porzi, et al.
[15], DeepLab with attention would outperform DeepLab.

6. Conclusion and Future Work

We have found comparable and slight improvements for
attention-augmented models. Based on our performance,
we believe that attentio-augmented CNNs have the poten-
tial to improve the accuracy of semantic segmentation and
warrant further investigation into the performance-boost of
integrated multi-head attention after training to convergence
on the Vistas dataset. We see some promising results for
the use of attention-augmented CNNs, however, more work
needs to be done to validate their performance. As we were
limited on time and resources, we were not able to train all
our models to convergence. We believe this to be our most
limiting factor in performance and the primary reason why
the attention-augmented DeepLab model did not overtake
the regular DeepLab model.

We intend to continue with this project in the future. As
we were limited on time and resources, we were only able
to train for 40,000 iterations. In the future, we will increase
the number of training iterations until convergence, which
is likely to be at least 192,000 iterations. We also intend
to fine-tune hyperparameters, particularly model learning
rates. To increase the number of training images, we will
also augment images by cropping, reflecting, and distorting
images in the Vistas dataset, and will also train with images
from the Cityscapes dataset. With this additional work, we
are confident that we will be able to show significant results
that multi-head attention-augmented models will improve
prediction for semantic segmentation over standard models.
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– Implemented dataloaders

– Integrated codebase for DeepLab and FCN

– Created results tables and predicted figure visu-
alizations

– Wrote paper

• Khalid Ahmad

– Implemented attention-augmented convolutions

– Integrated attention-augmented convolutions into
FCN and DeepLab models

– Set up Google Cloud Virtual Machine

– Wrote paper
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