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Abstract—Autonomous driving has the potential to save thou-
sands of human lives in traffic accidents and is a recent popular
area of interest. Recent research has focused on perception and
decision making for autonomous driving, including end-to-end
learning where steering angle is predicted directly from camera
images. In this project we focus on improving end-to-end learning
approaches with data augmentation methods and online learning.
Our results show that online learning methods such as DAgger
improved end-to-end learning with better lap time results, and
that data augmentation methods similar to DART has a similar
effect as collecting more data. Future work includes experiments
with additional generalizations in simulation environments, such
as adding obstacles or driving on different tracks.

I. INTRODUCTION

Autonomous driving has the potential to save thousands of
human lives in traffic accidents and is a recent popular area of
interest. The areas of perception and decision making is inte-
gral to the development of a fully autonomous vehicle. Often
these systems are large and complex, combining multiple sen-
sor modalities, feature detection, semantic segmentation, and
rule-based trajectory planning. End-to-end learning attempts
to go directly from raw input (such as image data) to control
output, relying on the network to learn appropriate driving
behaviors from the data. This minimalist approach could result
in smaller and more efficient agents.

Our project focuses on improving behavioral cloning from
end-to-end learning methods to generate steering angles. We
use a slightly modified version of the Udacity Self Driving Car
Simulator ' to test our algorithm, and experiment with online
learning methods inspired by DAgger’ and data augmentation
methods inspired by DART". Using a variant of NVIDIA’s
end-to-end learning architecture ' as a baseline, we are able to
achieve a similar or better result in terms of lap time around the
simulator’s “lake track” using these online learning methods
in fewer epochs than simply training on a static dataset.

II. RELATED WORK

The DARPA Urban Challenges are the first competitions
that sparked an increase in autonomous driving research.
Perception and decision making methods for autonomous
driving has improved since the 2007 DARPA Urban chal-
lenge. The winning car Tartan from CMU'' used a state
machine to generate behaviors such as ”Drive-Down-Road”
and “Handlelntersection” and used perception features such as
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lane boundaries to handle following lanes. The second place
car Junior from Stanford” also uses a similar approach for
behavioral generation using state machines and only focused
perception on segmenting static and moving obstacles.

More recently, more sophisticated techniques in deep learn-
ing and convolutional neural networks (CNNs) have been
developed for use in perception”, including segmentation of
point cloud obstacles and road detection. In regards to planning
and decision making, Schwarting et al.” noted several end-to-
end planning methods, where images are input into a deep
neural network (NN) and output paths are directly generated.

Bojarski et al. ' first pioneered the approach of using end-to-
end learning from raw image inputs directly to steering angle
commands. Farag~ applied this learning method successfully
to the Udacity Self Driving Car Simulator ', which we repli-
cate in our baseline system.

We experiment on improving the end to end learning
methods used in the baseline by using online learning methods
inspired by DAgger’. DAgger is a form of online learning
from expert data, where new data is collected from the trained
policy and then retrained using expert labeling. Since the
Udacity simulator does not support expert labeling during
autonomous driving, after we train an agent, we only start
collecting data when the agent is about to drive off the road.
We then retrain the agent using the new data.

Additionally, we also experiment on improving the baseline
by using data augmentation methods inspired by DART".
DART involves injecting random noise into the expert data
policy, which is more helpful for the agent to learn if it
encounters a state that it does not see in the training data.
In our case, we inject small uniform random noise of £0.01
into the steering angle for 60% of images to simulate slightly
different actions.

III. DATA

We collect data by manually driving around the Udacity Self
Driving Car Simulator, which contains a “lake track” and a
“forest track”. Each track contains different features to denote
lane lines and different variations in terrain to serve as ’edge
cases’ for the agent.

We are able to manually drive around the “lake track”
(Figure 1) using a mouse and keyboard. A built-in record
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Fig. 2: Examples of Left, Center, and Right Camera Images
from Dataset in Same Timestamp

function captures images at around 20 FPS with three front-
facing cameras mounted on the vehicle. After driving around
for three laps, we collected 4812 RGB 320x160 pixel images
for each of the left, center, and right cameras of the vehicle,
for a total of 14,436 images, which served as the training and
validation set for the baseline model. Each image (Figure 2)
was labeled with the image name, its corresponding steering
angle (in radians), throttle command, and speed in a CSV file.
As there is only one steering angle for three images, an offset
of +/-.2 radians is added to the annotated steering angle for
the right and left camera images, respectively. We then process
all the images and labels and split it up into a training set and
testing set. For each sample in the training set, we choose

one of the left, center, or right image uniformly randomly,
with the corresponding steering angle. We then perform data
augmentation on our dataset by randomly flipping, translating,
adding shadows, and adding brightness to the camera images
60% of the time per sample, and keep the original labeling the
other 40% of the time. For the experimental DART method,
we add random noise from -0.01 to 0.01 to the steering angle.
We also resize and crop the top half of our images to 66x200
for faster training. We then train the data on our model, which
outputs predicted steering angles.

IV. METHODS AND EVALUATION

A. System architecture

We use the model architecture from Bojarski et al. ! where
we input the RGB images and output a predicted steering
angle. We use an implementation of this model for Udacity’s
simulator by github user nakishibuya’, trained on our own
dataset, as a baseline. We made modifications to this code
for our own experimentation with different models and data
preprocessing. The baseline model consists of 5 Convolutional
layers and 4 fully connected layers with dropout. All layers
used ELU activation functions. The model architecture is
described in detail in Figures 3 and 4. The model takes in
a single RGB image, which in training may be any of the
three camera images. During inference, however, only the
center camera image is passed to the network. The baseline
system uses a static control algorithm to compute the throttle
for the car; this is not an output of the model as it only
provides predicted steering angle. The control for throttle is
given below:

throttle = 1.0 — 62 — (M)2
Vlim
This reduces the throttle from the maximum of 1.0 based on
the magnitude of the steering angle and how close the current
speed is to a software-set speed limit.

B. Training

We built the model in Keras and trained for 8 epochs,
each consisting of 20000 samples of batch size 40 for a total
of 6.4M images consumed. The training of 8 epochs took
approximately 10 hours on a MacBook Pro 2018. Additional
hyperparameters are described in Table 1.

We also trained the baseline model with the same hyperpa-
rameters on a Microsoft Surface Pro 4 for 35 epochs, 10000
samples, 40 batch size (or 14M images consumed), taking
20 hours. The model trained on Windows was used for the
experiments involving DAgger and the model trained on Mac
is used for the DART experiment. The reason for this is
due to inconsistent behavior of the simulator across different
hardware, which we discuss in further detail in the Limitations
section. From this point on, we will refer to one epoch as
10000 samples with batch size 40 for consistency.
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Fig. 3: Baseline Model Architecture
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Fig. 4: Baseline Model Architecture Visualization

C. Experiment Setup

For the DAgger algorithm, expert annotated actions over
agent-controlled state exploration needed to be collected. We
model the expert policy with a human driver using manual
control. The Udacity simulator does not support recording data
in autonomous mode, so we used the Unity game engine to
modify the simulator to support recording data in autonomous
mode. Additionally, we modified the simulator to increase the
car’s speed limit. In order to have expert annotations over
states explored purely by the agent, the expert would have to
estimate which steering angle to take without the feedback
of controlling the car. This proved intractable, but it is not
desirable to have a fully agent-controlled state exploration
anyway (the car may go off-road or crash, situations which
are unrecoverable and thus must be avoided). Therefore, we
allow the agent to drive in autonomous mode and take over
manual control of the car when the agent is about to drive off
the road. We record data during the segment where the expert
driver intervenes for the agent, and then retrain the agent using

Table 1: Baseline Hyperparameters

Hyperparameter Baseline
Input Size 66x200
Dropout Probability 0.5
Activation Function ELU
Loss Function MSE

Number of Epochs 8

Samples Per Epoch 20000
Learning rate .0001
Optimizer Adam
Batch Size 40

the new data. For each round of data collection, the agent
drives three laps and any interventions needed are recorded.
The resulting dataset additions throughout our experiments
ranged from 1575 to 2406 images.

For the DART method, we first collected a smaller dataset
after driving only one lap of 1275 images each for left, center,
and right cameras, for a total of 3825 images. We then augment
the data as usual, and this time adding uniform random noise
from -0.01 to 0.01 to the steering angle label. We then train the
model the same way as the baseline with the same parameters.

D. Evaluation

We evaluate the model’s performance based on the average
lap time over a three-lap time trial. In testing we raise the
set speed limit for the agent and rerun until it can no longer
successfully complete three laps, and we record the best
time. In addition, we record the amount of data added and
the number of epochs trained to compare how quickly the
experimental training methods can train the agent to drive
successfully.

V. EXPERIMENTS

We run three experiments to compare against the baseline:
DAgger, DAgger-Lite, and DART. Each of these experiments
start with a pre-trained model that is an early checkpoint of
the trained baseline model, one which has yet to learn to fully
drive around the track. In the case of the Windows baseline,
we chose the model trained for 10 epochs, and in the case of
the Mac baseline, we chose the model trained for 6 epochs.
The experiments are described below:

1) DAgger: 3 rounds of data collection; dataset for each
cycle is the union of the previous cycle’s dataset and
that cycle’s expert-annotated data. The initial dataset is
the training dataset.

2) DAgger-Lite: 3 rounds of data collection, however the
dataset for each cycle is fixed at N=16384 images
sampling the expert-annotated data at probability p = .5
and the previous cycle’s dataset at probability 1 —p = .5.
In other words, the dataset weights more heavily the
most recent experience given by the expert.

3) DART: A full lap of driving is recorded with noise
injected into the steering angle. This dataset (N=3825)



replaces the training dataset for the remainder of the
model’s training.

The DAgger models were trained for 1 epoch, checkpointed
at 5 equally spaced intervals, for each round of data collection.
DART was trained for 8 epochs. The performance was evalu-
ated at the first checkpoint where the model could drive around
the track at all, and, in the case of the DAgger experiments,
at the end of each round of data collection and training.

VI. RESULTS

The Mac baseline model trained for 16 epochs received
a final validation loss of 0.0268 and a final training loss of
0.0330. The earliest checkpoint able to drive around the track
more than three times was at 8 epochs, with an average lap
time of 1:54. The DART Model equalled the Mac baseline
performance with an additional 8 epochs (14 total).

The Windows baseline model trained for 40 epochs finished
with a training loss of .0234 and a validation loss of .0230.
The earliest checkpoint able to drive around the track was at
35 epochs; this model managed an average lap time of 1:34.
The DAgger model was able to drive after .4 epochs’ worth of
additional training in the first data collection cycle, achieving
a best lap time of 85 seconds, and this did not improve by the
end of the first cycle. It improved its laptime to 63 seconds
after the second round of data collection and to 56 seconds
after the third round of data collection.

The DAgger-Lite model performed worse than the DAgger
model, requiring the full epoch of training in the first round
of data collection before being able to complete 3 laps, doing
so with a lap time of 116 seconds. It improved to 71 seconds
after the second round of data collection, and to 68 seconds
after the third round of data collection. The full results and
relevant parameters are tabulated in Figure 5.

Table 2: Results

Model Epochs | Loss Loss | Ave | Total

(Train) | (Val) | Lap | Data

Time | Col-
(s) lected
Baseline(Win) 35 .0242 | .0224 | 94.3 | 14436
Baseline(Mac) 8 0410 | .0482| 113 14436
Baseline(Mac) 14 0151 | .0164| 115 18261
D1-002 (Win) 10.4 0415 | .0102| 85.3 | 16011
D1-005 (Win) 11 .0408 | .0311| 85.6 | 16011
D-Lite1-005 (Win) 11 L0522 | .0459| 116 16011
D2-005 (Win) 12 .0374 | .0925| 63.3 | 17634
D-Lite2-005 (Win) 12 0478 | 0119 71.3 | 18417
D3-005 (Win) 13 .0333 | .0784 | 56.7 | 19257
D-Lite3-005 (Win) 13 .0304 | .0094 | 68.0 | 20691

Fig. 5: Results for experiments at points of interest. Nomen-
clature: x-00y, where x is the data collection cycle and y is the
checkpoint, where 005 is 1 epoch trained. Epochs normalized
to 10000 samples, batch size 40.

VII. DISCUSSION

One interesting result of our experiments is that we found no
strong correlation between the performance of the agent and
the validation MSE between the predicted and actual steering
angle, although some reduction of training error was needed
before the agent was able to drive successfully. The results for
each model over the course of training are plotted in Figure 6
and 7. This indicates that similarity to the expert is not crucial
for driving proficiency, at least for a problem as unconstrained
as ours. For one, there are many states the agent may encounter
that it has never seen in the data; in such cases similarity to
the expert is not guaranteed to produce a correct action. In
addition, there are many ways to take a turn in a track without
obstacles in the lanes; since there are many appropriate ways
to take a turn, dissimilarity to the expert doesn’t imply poor
driving.
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Fig. 6: Model Training Loss over time. Although training
loss goes down over time, we found that there is little
correlation between training loss and how well the model
drives autonomously.

Both DAgger and DAgger-Lite had better lap times com-
pared to our baseline, although DAgger performed better than
DAgger-Lite. They were also able to reach a proficient level
of driving in considerably less training time than the baseline.
In testing some of the earlier baseline model checkpoints,
we found that the agent could mostly drive around the track,
except for a couple edge cases where it would get confused. By
adding data specifically showing how the expert recovers from
these edge cases not found in the training data, the DAgger
models are quickly able to learn how to overcome these edge
cases. We did not test whether a randomly initialized model
trained on the aggregated datasets would reach an equivalent
level of performance in less total epochs due to lack of time,
but this would not be a good comparison to DAgger either.
The baseline model was needed to collect the data in the first
place - we could not have known which data to collect without
first knowing which parts of the track are the edge cases.
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Fig. 7: Model Validation Loss over time. We found that
validation loss was not a good predictor of how well the model
drives autonomously.

The difference in the training time for the DAgger compared
to the baseline model echoes the intuition that most driving
situations are very quickly learnable, but the difficult parts
involve unforeseen states or scenarios. A driving agent then
might be trained most efficiently by starting with simpler
situations and progressively adding more complicated ones to
teach more complex behaviors, rather than attempting to learn
several patterns in the data at once. The question of where
to cut off training and add more data is an open-ended one,
which we leave to future research.

Between DAgger and DAgger-Lite, we found that DAgger-
Lite performed worse at each cycle than unmodified DAgger.
This was true even while the data was the same (for the first
data collection cycle, the data collected is the same because
the models are identical). This suggests that the model may be
focusing too much on edge cases with p = .5 and consequently
forgetting other patterns in the original training dataset. We
thought that this might still result in DAgger-Lite learning the
edge cases faster in the first cycle due to the annotated edge
case data being weighted fivefold in comparison to DAgger,
but this was not the case, suggesting that there may have
been useful patterns in the training data yet to be learned that
DAgger-Lite missed out on due to statistically prioritizing that
data less.

A. Limitations

There were several challenges that we dealt with when
conducting our experiments. The first (referred to earlier in
the Methods section), is that the simulator behaves differently
on different hardware, which resulted in models trained on one
of our systems (Mac) not being transferable to the other (Win-
dows). This is documented in the Udacity project repository
README". Due to the long training time, we were forced
to run separate experiments with separate baseline models.
The models’ performances were not easily comparable across

the DAgger and DART experiments because we could not
exchange models and compare performance, and the baseline
did not perform the same for the same amount of training. In
addition, because data had to be collected separately, driving
style between different people and even with the same person
across different runs may have affected the distribution of data
between experiments, so the number of images collected may
be a poor point of comparison. Occasional frame rate drops
on Windows also affected model behavior because only one
action can be made per frame. We tried our best to maintain
consistent testing conditions, but a proper test would involve
much better hardware and a simulator with a capped frame
rate. Lastly, it was observed that the simulator executable
published by Udacity (used for the Project Milestone results)
behaved differently than the one we built from Unity (with
both modified and unmodified source with respect to the Udac-
ity repository) possibly due to differences in Unity versions;
as a result we had to discard old results and start over with
the modified simulator used for our experiments.

B. Future Work

We were surprised that our DAgger-Lite performed better
than DAgger, so we would like to explore why. This could
be because DAgger-Lite oversamples edge cases compared to
normal driving cases, which hurts overall performance during
normal driving conditions.

Additionally, we also would like to explore how well
DAgger-Lite generalizes for additional edge cases and com-
plex environments, such as when there are random obstacles
on the road or different tracks and environments. This may
require using a different simulation environments or heavily
modifying our existing simulator.

Lastly, we would like to explore the output control of the
throttle as well as the steering angle in an end-to-end learning
network. Our current model fixes throttle as a function of
the output steering angle, but perhaps that is not the optimal
throttle. This means that we would have two independent
outputs for the neural network - both throttle and steering
angle.

VIII. CONCLUSION

We replicated the NVIDIA model with a dataset gener-
ated from our own manual driving (augmented according to
the published randomized techniques described above). We
conducted experiments using DAgger and DART and found
that incorporating expert annotations over partially-trained
agents’ failing edge cases results in faster learning towards
driving proficiency. DAgger performed the best in terms of lap
time, followed by DAgger-Lite, and lastly the baseline model.
Focusing too much on edge cases in DAgger-Lite, however,
while it allows the dataset size to be limited, may not be as
effective as simply taking all the data available. We also found
that train loss and validation loss are not incredibly descriptive
methods for how well the car drives (other than indicating
overfit when training loss is much lower than validation loss);
the dataset’s coverage of the state space seems to be a more



critical contributor to the quality of agent that can result from
training.

SUPPLEMENTARY MATERIAL

The source code and driving videos may be found in the
following Google Drive link: https://drive.google.com/drive/
folders/1ZJG7T89krM 1 gHkKcp93FsKbx-LwBysqW ?usp=

sharing.
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