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1 Introduction

There has been extensive research on developing self-driving cars, and several companies
have been working on deploying autonomous vehicles. Since the ultimate goal of develop-
ing these autonomous cars is for them to drive on public streets, they will have to interact
with human-driven vehicles for the foreseeable future [4], which motivates the problem of
predicting human driving behavior using effective models that work well in practice. When
planning for this interaction, a major issue that arises is that human beings are unpredictable
and do not behave optimally. The standard approach to interactions with human drivers
is to treat human cars as moving obstacles [2], deriving autonomous driving strategies that
are highly defensive. An unintended consequence of this approach is that human drivers
do not anticipate such defensive driving because of its non-human-like and opaque nature
[2], and in many cases respond even more unpredictably. Recent research [2] presented the
key insight that an autonomous car’s actions will affect what human drivers do in response,
creating an opportunity for coordination. Specifically, the proposed idea is to use an ap-
proximate human reward function when deciding what actions the autonomous car should
take, in addition to the reward function for the autonomous car itself, so that it can account
for the effects its actions could have on the human driver’s actions and choose its actions
accordingly. This new model, which leads to improved coordination between autonomous
cars and human cars, is a positive step towards a self-driving car that is better prepared for
interactions with human drivers.

A key step towards this goal of improved coordination is learning a good human reward
function. We focus on this task in this project. Briefly, we use maximum entropy inverse
reinforcement learning (IRL) to learn a human reward function from driving demonstration
data we generate using a driving simulator, and we evaluate the learned human model by
running experiments comparing a real human driver with an autonomous driver with our
learned human reward function as its reward function. We then work on improving the
learned human reward function by adding new features, modifying existing features, creat-
ing new scenarios to get more diverse data and obtain a richer reward function, and creating
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a validation method to test different IRL algorithms and weights.

2 Related Work

There has been work on predicting human driving behavior using Bayesian Additive Re-
gression Trees (BARTs) [4], where the authors focus on one specific scenario – whether a
human driver would stop at an intersection before executing a left turn – and try to cor-
rectly predict the human action. The authors focus on one particular scenario because
of the enormous complexity of the task of predicting human driving behavior, which they
explain in the paper. This gives an indication that perhaps other tools can be more effective.

One appealing technique for predicting human driving behavior is to use inverse reinforce-
ment learning (IRL) to learn a human reward function. This approach works well and
provides long-term prediction of fine-grained driving behavior [3]. Recent work by Sadigh
et. al [2] explored this idea. This project was inspired by that work, where the authors
created a system where autonomous (robot) cars use IRL to approximate human reward
function and add that into the robot reward function in order to have the robot collaborate
and influence human driver behavior. Our work extends this research by refining the human
reward function using IRL, designing and implementing new features, and designing addi-
tional world scenarios for the autonomous cars. The goal of this project is to demonstrate
that it is possible to derive a reward function from human driver data that both 1) success-
fully characterizes what influences the behavior of a human driver under a given scenario
and 2) allows us to reproduce human behaviors using a robotic agent placed in the same
scenario from which the human driver data was collected.

3 Task Definition

3.1 Introduction

To build an autonomous car model that interacts effectively with human drivers under this
new coordination paradigm while still being safe, we aimed to develop a good predictive
model for human driving behavior. To learn these models, we ran IRL on data from hu-
man driving scenarios. This project entails running multiple scenarios in which, for each
scenario, we measure driving statistics of a human agent, a baseline agent utilizing a simple
reward function, and an agent utilizing our learned reward function from human driving
data. We then compare the driving statistics of all three with the human data serving as
our upper bound (oracle) for performance and our baseline data serving as our lower bound
for performance.
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3.2 Model

The problem is modeled as a linear dynamical system in a fully observable continuous state
space, where the agents are the human driver and autonomous drivers. We are using a linear
combination of features for the reward function, where we define the reward function R(s)
in the following equation:

R(st) =
N∑
i=1

αiφi(st)

where st, the current state, is a 3-tuple containing the current physical state xt, the human
control input ht, and the robot control input rt. Features in φ are clearly outlined under
”Approach.” We start with a simple initial configuration of weights qualitatively chosen,
which serves as our baseline. Our goal is to optimize these weights to obtain a reward
function that can be used to model human driving behavior, which serves as our oracle.

3.3 Input/Output

Intended input is human driving data in the form of trajectories and velocity the driver
takes recorded from simulated driving scenarios. This data is saved as a .pickle file, a python
object serialization file. Desired output is a vector containing optimal weights that can then
be applied to the human reward model that can be used to inform trajectories of a self-
driving car. This output reward function is meant to succinctly characterize what influences
the actions of a human driver so that an agent is able to choose actions that maximize the
resulting reward function and thus, ideally, best match how a human driver would act in a
given scenario. An example of input would be a human driver runs a simulation where they
drive at a reasonable speed, avoid other agents, and pass them when needed. The resulting
measurements taken from the scenario are then used to determine a reward function for a
self-driving agent that then is able to maneuver around other agents carefully in a similar
manner.

4 Infrastructure

Necessary infrastructure for this project primarily consists of the code base used for Professor
Sadigh’s paper [2] mentioned under ”Related Work.” Professor Sadigh’s code base consists of
code that allows for simulation of driving scenarios, a sample collection of data from driving
scenarios run through simulation, and implementation of a driving agent that maximizes
a given reward function. We designed driving scenarios to work with the simulator to use
for evaluation of different agents in our experiments, which were not built in with Professor
Sadigh’s code base. Data collected from experiments consists of agent x and y positions,
steer, heading, speed, and acceleration. Data is then stored as a pickle file that is used to
run Inverse Reinforcement Learning to derive a reward function for features to be designed.
We also created a script for parsing the pickle data file and plotting the data. Dynamics for
driving agent such as steering controls that determine the path that an agent takes between
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two points are handled in the original code base and were used as is.

The code for our experiments, visualization, and IRL can be found here, which is a repository
forked from the repository containing the original code base from Professor Sadigh’s lab.

5 Approach

5.1 Proposed Methods

The main technique used for project is inverse reinforcement learning, used to learn a human
reward function that predicts human behavior in driving scenarios. In IRL, instead of choos-
ing what actions to take based on a given reward function, a reward function is derived from
given behavior in some scenario based on representative features we design. We run inverse
reinforcement learning on driving data that we have generated ourselves using our simulator.

After generating driving data from multiple scenarios, such as the one in Fig. 1, IRL was
run to determine the reward function that best described the human driver’s actions across
the collected scenario data. The determined reward function was then used as the reward
function employed by our computer driver. We then tested the abilities of the computer
driver with the newly generated reward function to determine if there were any tangible
improvements in its driving ability.

For our IRL algorithm, we apply the principle of maximum entropy to define a probability
distribution over human demonstrations such that trajectories that have a higher reward
are more probable. We achieve this by making the probability of the human action h pro-
portional to the exponential of the rewards encountered along the trajectory, given by our
parameterized reward function R(s):

P (h | x0, α) =
exp(R(x0, r, h))∫

exp(R(x0, r, h′))dh′

This setup makes good human expert actions (from our human driving data) closer to being
deterministic, since their probability would be higher corresponding to their higher reward.
At the same time, since our human driving data isn’t perfectly optimal, this makes less
optimal, noisy actions less probable, which partly solves the problem of non-optimal human
behaviors affecting our learned human reward function. More details on this can be found
here [1]. We then optimize by choosing the weights αi in the reward function that make the
human demonstrations the most likely: maxα P (h | x0, α).
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5.2 Features

Features for our reward function are as follows: φ1 = sum of euclidean distances between the
center point of the car to the boundaries of its lane, φ2 = sum of euclidean distance between
the center point of the car and the boundaries of the road, φ3 =distance car has travelled in
the y direction, φ4 = speed at which car is travelling, and φ5 = sum of euclidean distances
between the center point of the car to the boundaries of other cars. φ1 is meant to give a
value to how centered the vehicle is in its respective lane. φ2 is meant to give a value to the
vehicle staying within the boundaries of the road. φ3 is meant to give value to how far along
the road the car has travelled. φ4 is meant to give value to how fast the car is moving along
the road. φ5 is meant to give value to keeping a safe distance from other cars.

6 Evaluation

6.1 Baseline

Our baseline is a test driving agent with the same feature values as our agent following our
learned human model but whose weight vector are a simple initial set of weights that has not
been determined through reinforcement learning, but has instead been qualitatively chosen.
We compare our agent’s driving performance using our learned weights to the performance
of the test agent with these simple weights to confirm that our learned weights are actually
meaningful and are indeed responsible for the agent’s improved driving ability. Our baseline
agent was given the starting weights α = [1., 50., 10., 10., 60.] for its reward function R(s).
These weights were chosen to highly reward maintaining distance from other vehicles and
staying within the boundaries of the road.

6.2 Oracle

Our oracle is the expert human driver. Since inverse reinforcement learning is trying to
imitate human behavior by maximizing the human reward function, we assume that the
expert human driver is the ideal driver. In the simulation, our oracle is the data and
trajectories collected from the human driver.

7 Results

Selected data from our baseline, oracle/human, and inverse reinforcement learning robot
driver is shown below. Our baseline is shown in red, the human driver is shown in blue,
and the inverse reinforcement learning robot driver is shown in green. A picture of the start
of each world scenario is shown next to the corresponding plots of acceleration, heading,
speed, steering, and trajectory. The x-axis unit for all the plots is each time step, except for
the trajectory graph, which has the x coordinate on the x-axis and the y coordinate on the
y-axis.
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Figure 1: Scenario 1 - Vehicle on 5 lane highway shared with 5 other vehicles

Figure 2: Scenario 2 - Vehicle on 3 lane highway shared with 9 other vehicles
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Figure 3: Scenario 3 - Vehicle on 5 lane highway shared with 9 other vehicles

8 Analysis

We qualitatively evaluated the performance of our autonomous agent across three driving
scenarios by comparing the graphs of each of its driving statistics (trajectory, speed, steer,
acceleration, and heading) to those of our baseline agent and of our human driver.

Our learned model yields behavior different from the baseline agent’s, but does not ex-
hibit many similarities with our oracle agent. With values such as speed and acceleration,
our learned agent appears to take patterns in the human driver’s behavior to the extreme,
as can be seen in the plots for scenario 1 and scenario 2. In scenario 2, learned model yields
behavior closest overall to that of oracle, exhibiting a similar trajectory, heading, and speed,
although curves of learned agent appear to be smoother versions of curves of human agent.
In scenario 3, learned model yields behavior closest overall to that of baseline agent, nearly
matching the baseline agent’s trajectory, heading, and steer.

A qualitative evaluation of the learned behavior shows more human-like characteristics in
driving of learned agent compared to that of baseline agent but not significant enough to
suggest that learned agent in fact utilizes a human reward function. Stability in learned
agent’s driving can likely be attributed to that fact that vehicle steering controls, which
control how an agent moves from one point to another, are built into simulator and held
constant across both the learned agent and baseline agent. Since the human agent does not
utilize the simulation’s steering controls, it is able to move from lane to lane differently than
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either robot agent and there is no way for our current system to capture this for our learned
agent to then use for itself. Taking this into account, we conclude that our reward function
was not enough to capture the complexity of human driving, likely due to its low number of
features and lack of complex features.

9 Future Work

While this project has demonstrated that there is potential for deriving a meaningful reward
function from human driving data from our given simulation scenarios, there are many op-
portunities for improving methods for testing our thesis.

Firstly, work can be done to expand our features to include more complex features that
allow us to capture finer properties of human driving behavior in our reward function. Our
current set of features only allows us to characterize basic driver traits, such as how much a
driver values staying within the bounds of a lane, but does not capture, for example, what
speed a driver prefers to be travelling when in a specific lane or how fast a driver prefers to
be moving relative to the speeds of other vehicles on the road at the same time.

Secondly, our current driving scenarios are not complex enough representations of real world
driving scenarios. Use of the RTI automotive simulator to collect human driving data for
tests would allow for more detailed driving scenarios to be run for testing and for more data
to be collected over a longer period of time. A larger quantity of higher quality driving data
should improve chances of being able to derive a reward function through IRL that better
characterizes the reward function for human driving behavior.

References

[1] Sergey Levine and Vladlen Koltun. “Continuous Inverse Optimal Control with Locally
Optimal Examples”. In: ICML ’12: Proceedings of the 29th International Conference on
Machine Learning. 2012.

[2] Dorsa Sadigh et al. “Planning for cars that coordinate with people: leveraging effects
on human actions for planning and active information gathering over human internal
state”. In: (May 2018).

[3] Masamichi Shimosaka et al. “Predicting driving behavior using inverse reinforcement
learning with multiple reward functions towards environmental diversity”. In: 2015
IEEE Intelligent Vehicles Symposium (IV) (2015), pp. 567–572.

[4] Y. V. Tan, C. A. C. Flannagan, and M. R. Elliott. “Predicting human-driving behavior
to help driverless vehicles drive: random intercept Bayesian Additive Regression Trees”.
In: ArXiv e-prints (Sept. 2016). arXiv: 1609.07464 [stat.AP].

8

http://arxiv.org/abs/1609.07464

	Introduction
	Related Work
	Task Definition
	Introduction
	Model
	Input/Output

	Infrastructure
	Approach
	Proposed Methods
	Features

	Evaluation
	Baseline
	Oracle

	Results
	Analysis
	Future Work

