Hierarchical Deep Reinforcement Learning through Scene Decomposition for
Autonomous Urban Driving

Peggy (Yuchun) Wang' Maxime Bouton?> Mykel J. Kochenderfer >

Abstract

Reinforcement learning combined with utility
decomposition techniques have recently demon-
strated the ability to scale existing decision strate-
gies to autonomous driving environments with
multiple traffic participants. Although these tech-
niques are promising, it is not clear how their
performance would generalize past the demonstra-
tions on a limited set of scenarios. In this study,
we investigated the possibility of fusing existing
micro-policies to solve complex tasks. Specif-
ically, we applied this method to autonomous
urban driving by developing a high-level policy
composed of low-level policies trained on urban
micro-scenarios using hierarchical deep reinforce-
ment learning. To demonstrate this, we solved
for low-level micro-policies on a simple two-lane
left-lane change scenario and a simple single-
lane right-turn merging scenario using Deep Q-
Learning. We used utility decomposition methods
to solve for a policy on a higher level composite
scenario given as a two-lane right turn merging
scenario. We achieved promising results using
utility decomposition compared to the baseline
policy of training directly on the complex scene.
In the future, we plan on developing a city-level
policy composed from multiple micro-policies by
continuing to develop an algorithm that efficiently
and accurately decomposes scenes.

1. Introduction

One of the challenges facing autonomous driving in urban
environments is decision making under uncertainty in many

"Department of Computer Science, Stanford University
*Department of Aeronautics and Astronautics, Stanford University,
not enrolled in CS234 *Department of Aeronautics and Astronau-
tics, and by courtesy, Department of Computer Science, Stanford
University, not enrolled in CS234. Correspondence to: Peggy
(Yuchun) Wang <peggy.yuchun.wang@cs.stanford.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

different traffic scenarios. Factors such as environmental
dynamics, interactions with other drivers, and generalization
of road scenarios are difficult. Particularly challenging is
generalization of many different policies given different
road topologies.

In practice, most autonomous vehicles use a state machine
to switch between predefined behaviors (Schwarting et al.,
2018). However, these rule-based approaches make it diffi-
cult to generalize when dealing with a scenario that is not
defined in their state machines. Additionally, the rule-based
approaches are not scalable as there is no guarantee that
every possible state that will ever be encountered will be
encoded in the state machine, which means that when en-
countering states not encoded in the state machine, the agent
will not know what to do.

Currently, literature on an alternative to a rule-based ap-
proach to decision making include game theoretic ap-
proaches with multiple agents (Fisac et al., 2018) or solving
through Deep Reinforcement Learning (DRL) on simple sce-
narios such as lane-changing scenarios (Wang et al., 2018).
However, these approaches all contain limitations. Although
game theoretic approaches perform well in regards to solv-
ing for the model of another agent, it does not scale to
multiple agents. An advantage of using DRL to solve for
policies is that it handles continuous spaces as opposed to
only discrete spaces handled by the rule-based approaches.
Nonetheless, DRL faces the same general problem as the
rule-based approaches - it is not scalable because the solver
would have to be run on every single scenario that could
ever exist. Moreover, DRL also is expensive to train and
compute, and would require a large amount of time to train,
especially if it needs to be trained on every possible scenario.

To address this issue, in this study we chose to focus on the
use of utility decomposition on complex scenarios. To the
best of our knowledge, this is the first work that has been
done on this problem of planning generalization.

We investigate the possibility of developing a high-level
policy composed of low-level policies trained on micro-
scenarios using hierarchical deep reinforcement learning
(DRL). For example, if we have a policy for a left turn ata T
intersection, one for a crosswalk, one for a round-about, and

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

one for lane change, we then use the knowledge from these
micro-policies to adapt to any driving situation. A double
lane round-about could perhaps be seen as a composition of
a single-lane round-about policy and a lane change policy.

A key limitation of our approach is the method of decompo-
sition. In this study, we handcrafted a composition scenario
that is able to decompose into micro-scenarios. However,
in the future, we would like to investigate algorithms that
are able to automatically decompose a complicated scenario
into a predefined set of micro-scenarios.

The remainder of this paper presents a utility decomposition
method using two low-level scenarios. To demonstrate this,
we solved for low-level micro-policies on a simple two-lane
road left lane-change micro-scenario and a simple single-
lane right-turn intersection scenario using Deep Q-Learning
Networks (DQN). We then used utility decomposition meth-
ods to solve for a policy on a high-level composite scenario
represented as a two-lane right-turn merging scenario. We
compared our policy generated using utility decomposition
with the baseline policy of directly training on the composite
scenario using DQN. Our utility decomposition policy has
comparable performance to the baseline policy and shows
that complex policies can effectively be approximated using
utility decomposition.

2. Related Work

2.1. Deep Reinforcement Learning for Autonomous
Vehicle Policies

In recent years, work has been done using Deep Reinforce-
ment Learning to train policies for autonomous vehicles,
which are more robust than rule-based scenarios. For ex-
ample, Wang et al. has developed a lane-change policy
using DRL that is robust to diverse and unforeseen scenar-
ios (Wang et al., 2018). Moreover, Wolf et al. has used DRL
to to learn maneuver decisions based on a compact semantic
state representation (Wolf et al., 2018). Chen et al. has used
DRL to select the best actions during a traffic light passing
scenario (Chen et al., 2018).

2.2. Policy Decomposition

In recent years, advances have been made in the area of
policy decomposition. Zhang et al. has decomposed a
policy for a block stacking robot by decomposing a complex
action to simpler actions (Zhang et al., 2018). Liaw et
al. has trained a meta-policy using Trust-Region Policy
Optimization (TRPO) based on simpler basis policies (Liaw
etal., 2017).

2.3. Utility Decomposition

Utility decomposition methods are similar to policy compo-
sition methods, except that they decompose the state-value
function (also called the utility function) rather than the pol-
icy. The concept of value decomposition was first described
as Q-decomposition by Russell and Zimdars (Russell &
Zimdars, 2003), where multiple lower-level state-action val-
ues functions are summed together. Recently, methods such
as Value Decomposition Networks (Sunehag et al., 2017),
and QMIX (Rashid et al., 2018) build upon this idea. Value
Decomposition Network methods generate a state-action
value function summed from from low-level value functions
generated from DRL networks. QMIX fuses low-level value
functions by using DRL to train weights and biases for each
low-level value function before summing them together.

Bouton et al. applied utility decomposition to the field of au-
tonomous driving (Bouton et al., 2018). The low-level value
functions were trained using DRL on a single agent and then
fused together. A deep neural network was used to train a
correction factor before summing the low-level value func-
tions to create an value function approximation for multiple
agents. This method was applied to autonomous driving
and was able to approximate the value function of cross-
walks with multiple agents from fusing the value function
of crosswalks with a single agent. Although these tech-
niques are promising, it is not clear how their performance
would generalize past the demonstrations on a limited set of
scenarios.

3. Background

We modeled the urban traffic scenarios as a sequential deci-
sion making problem, in which we optimized for the highest
reward. We formulated the environment and dynamics as a
fully-observable Markov Decision Process (MDP) (Kochen-
derfer, 2015).

3.1. Reinforcement Learning

We formulated the problem using a reinforcement learn-
ing framework (Sutton & Barto, 2018), where the agent
sequentially interacts with the environment over a series
of timesteps. We modeled the environment as a Markov
Decision Process (MDP). We formally defined a MDP as
a 5-element tuple of (S, A, T, R, v), where S is the state
space, A is the action space, T is the state transition function,
R is the reward function, and + is the discount factor. At
each timestep t, the agent chose an action a; € A based on
observing state s; € S. The agent then receives a reward
r+ = R(st, at). In the next timestep t+1, the environment
transitions to a state s;; based on the probability given by
the transition function Pr(sy1|s¢, ar) = T(S¢41, St, ar).
The agent’s goal was to maximize the expected cumulative

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

discounted reward given by Zfi 0 VT

A policy 7 is defined as a function mapping from states
to probability of distributions over the action space, where
m: S — Pr(A). The agent probabilistically chooses an
action based on the state. Each policy 7 is associated with
a state-action value function @™, representing the expected
discounted value of following the policy 7. An optimal
state-action value function of a MDP Q*(s, a) satisfies the
Bellman Equation:

Q*(s,a) = R(s,a) + ’}/ZT(S/, s,a)mazry Q*(s',a’)
i (1)

where s is the current state, a is the action taken, s’ is the
next state reachable from action a, and a’ is the next action
in state s’. An optimal policy 7*(s) = argmaz,Q*(s,a)
takes the argmax of the actions over the value function.
The utility of the given state was defined as U(s) =
max,Q*(s,a).

3.2. Utility Decomposition

Utility decomposition, sometimes called Q-decomposition
(Russell & Zimdars, 2003), involves combining the ac-
tion value functions of simple tasks to approximate the
action value function of a more complex task, assuming
that the simple tasks are a substructure of the more com-
plex task. This hierarchical structure of tasks solved using
reinforcement learning is an example of a Hierarchical Rein-
forcement Learning (HRL). In the general case, the agent’s
Q*(s,a) = f(Qi(s,a),...,Q%(s,a)), where Q* is the op-
timal state-action value function of the agent, and @, is
the state-action value function each of the agent’s subtasks.
Examples of the functions used in utility decomposition
and HRL include Q-decomposition (Russell & Zimdars,
2003), where Q*(s,a) = Y i, Qi(s,a) and Value De-
composition Networks (VDN) (Sunehag et al., 2017), where
Q(s,a) = >°.2, Qi(s, a). Inthis study, when we have a sin-
gle composite scenario comprised of two micro-scenarios,
we can represent the value function of the combined sce-
nario Qcomp as:

Q(:o’m,p(sa (l) = Ql(sa Cl) + Q2($7 CL).

4. Approach

We used the AutoViz.jl driving simulator (https://
github.com/sisl/AutoViz. j1) developed by the
Stanford Intelligent Systems Lab (SISL) for traffic, road-
ways, and driver model simulations. We first solved for
low-level policies offline on micro-scenarios using Deep
Q-Learning on AutoViz.jl. We then decomposed the com-
plex merging scenario (Figure 3) into two micro-scenarios
(Figures 9 and 10) using the spatial road representations and
developed a value function of the complex scenario using

Figure 1. Starting state of the AutoViz.jl simulation of the lane-
change micro-scenario. The ego vehicle is red and the obstacle
cars are green. The ego car needs to drive from that starting point
to the goal position of the end of the left lane without crashing into
the obstacle cars.

Figure 2. Starting state of the AutoViz.jl simulation of the right-
turn merging micro-scenario. The ego vehicle is red and the ob-
stacle cars are green. The ego car needs to drive from the starting
point to the goal position of the end of the lane on the far right
without crashing into the obstacle cars.

after fusing the value functions of the low-level policies.
Lastly, we extracted the policy from taking the argmax of
the fused value function.

4.1. Modeling Driving Scenarios as Markov Decision
Process

The simulation environment was modeled as an MDP. The
state included the roadway structure, the position in Frenet
frame, and Euclidean velocity of every car in the scene.
Transition functions were given by the simulation moving
forward one time step deterministically. We developed the
reward function (Algorithm 1) as receiving a normalized
reward of +1 at the goal position, and defined a collision
and off-road position as receiving a reward of -1. If the ego
vehicle reached either one of the three previous states, the
state becomes a terminal state. If the car was on the road
but not yet at the goal state, our reward is -0.01 times the
normalized distance to the goal. We discretized the actions
by defining the action space as combinations of longitu-

https://github.com/sisl/AutoViz.jl
https://github.com/sisl/AutoViz.jl

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

Figure 3. Starting state of the AutoViz.jl simulation of the two-lane
right-turn combined merging scenario. The ego vehicle is red and
the obstacle cars are green. The ego car needs to drive from that
starting point to the goal position of the end of the leftmost lane.

Algorithm 1 Reward Function

Require: state
Ensure: reward
if isCollision(state) or isOffRoad(state) then

reward = -1.
else if reachGoal(state) then

reward = 1.
else

reward = -0.01 * distanceToGoal(state)
end if

return reward

dinal acceleration between —2.0m/s? and 2.0m/s? in a
1.0m/s? interval and and lateral steering angles accelera-
tions between —1.0rad/s? and 1.0rad/s? in a 0.1rad/s>
interval.

We modeled the position of the car based on the Frenet
frame instead of the Euclidean frame, where each Frenet
frame corresponded to each lane. Frenet.s referred to the lon-
gitudinal position of the car along the lane starting from the
lane origin and Frenet.t referred to the latitudinal position
of the car starting from the center of the lane.

4.2. Deep Q-Learning

We used the DeepQLearning.jl package from JuliaPOMDP
to develop our Deep Q-Network (DQN). We defined a DQN
with 2 hidden layers of 32 units each and used a Rectified
Linear Units (Relu) activation function for each layer. We
passed in a 1 x 4 state vector for each vehicle. Our output
of the DQN is a policy for the scenario being trained on.
Additional hyperparameters for our DQN may be found in
the Appendix.

We implemented the input state representation passed into
the neural network as an n x 4 dimensional vector, where
there are n total number of cars in the scene. Each car has 4

elements representing its state: the state of its s (longitudi-
nal) position in the Frenet frame, its velocity in Euclidean
space, and a one-hot vector representation of the lane it is
currently in. We normalized the Frenet s position by the
total road length and the speed by the maximum speed to
facilitate training and increase time of convergence. The
ego car is always represented by the first four elements of
the n x 4 dimensional vector. In our scenarios, since n = 3,
we pass in a 12-dimensional vector to the DQN.

4.3. Utility Decomposition

We assumed that the combined two-lane merging scenario
(Figure 3) may be fully decomposed into a two=lane change
micro-scenario (Figure 1) and a single-lane merging micro-
scenario (Figure 10). This assumption meant that utility
decomposition methods could be used to solve this problem,
specifically that

onmp(s,a) = f(QT(s,a),Q;(s,a)),

where Q7,,,, was the optimal state-action value function
for the combined two-lane merging scenario, ()7 was the
optimal state-action value function for the lane-change sce-
nario, and 5 was the optimal state-action value function
for the single-lane merging scenario.

Under this assumption, we could approximate the optimal
state-action value function Q7,,,,,,, as a linear combination
of the value functions of the decomposed micro-scenarios,
where Q7,,,,(s,a) = QF + Q3. We estimated Q7 and
5 by training a DQN to estimate the state-action values
trained on the corresponding micro-scenarios. We call these
estimates Q? and Q;, respectively. Therefore, the estimate
of the value function Q7,,,,,, may be represented as onmp,
where

QZomp(Sv a) = QT(Sa a) + Q;(Sv a)'

*

We then extracted an estimate of the optimal policy 77.,,,,,

using Q* comp (8, @), where

Tromp = OTgMarqQrom, (s,a).

Algorithm 2 Utility Decomposition Algorithm

Require: simplePolicyl, simplePolicy2, state
Ensure: combinedPolicy
simpleStatel, simpleState2 <— decompose(state)
QCompNetwork = actionValues(simpleStatel,
simplePolicyl) + actionValues(simpleState2,
simplePolicy2)
combinedPolicy = argmax(QCompNetwork)
return combinedPolicy

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

4.4. Decomposing Complex Scenarios into
Micro-scenarios

We developed a utility decomposition algorithm shown in
Algorithm 2. We decomposed a complex state by mapping
every position on the full scenario to a position on each
micro-scenario. For our two-lane right-turn merging sce-
nario, we mapped the starting lanes of the ego and obstacle
cars to the right lane of the two-lane micro-scenario, and
we mapped the leftmost lane to the left lane of the two-lane
micro-scenario. We also mapped the two horizontal lanes
on the full scenario onto the single horizontal lane on the
right-turn merging micro-scenario, and we mapped the ver-
tical lane of the ego vehicle onto the vertical lane of the
micro-scenario. To adjust for different lengths of the road,
we normalized the road lengths when we decomposed into
the micro-scenarios.

5. Results

5.1. Experiments

We developed a series of experimental scenarios using the
AutoViz.jl simulator. The codebase is currently hosted
at https://github.com/PeggyYuchunWang/
Deep—-HRL-for-Scene—-Decomp.

The AutoViz.jl simulation environment was first set up in
Julia. We then created a simple two-lane change micro-
scenario, where the world was composed of a straight two-
lane road with two other obstacle cars (green) in addition to
the ego vehicle (red). This starting state is shown in Figure 1.
The ego vehicle needs to drive from the start of the right lane
to the goal of the end of the left lane without crashing into
the obstacle vehicles or going off-road. We also created a
simple single-lane right-turn merging micro-scenario shown
in Figure 2. The ego vehicle needs to drive from the start
of the vertical lane to the goal of the end of the horizontal
lane without crashing into the obstacle vehicles or going
off-road.

We modeled the world as an MDP, where we created a class
called DrivingMDP for which the state representation of the
MDP, reward function, discretized action spaces, and transi-
tion functions were implemented. We used the POMDPs.jl
framework to create the MDP. We also implemented a looka-
head function to prevent the car from going off-road and
crashing into an obstacle. The lookahead function was then
masked with the action space to create a safe action space
for faster training. Deep Q-Learning then was used with two
hidden layers on the DrivingMDP model to learn a success-
ful policy of changing lanes. We assumed that the obstacle
cars are going at constant speed and direction using a con-
stant driver model, and that the cars start at an urban speed
of 10.0 m/s. We also assumed the world was deterministic.

Global State s

:

a. Regular Q-network

Global Q-function

Qcomp

Fusion 5 :
Function ! '

b. Q-Decomposition Network

Figure 4. Architecture Comparison of a Regular Q-Network and a
Q-Decomposition Network. (a) shows the architecture of a Regular
Q-Network. (b) shows the architecture of a Q-Decomposition
Network. Figure revised from (Bouton et al., 2018).

5.2. Description of Results

We successfully trained micro-policies using Deep Q-
Learning for a simple lane-change micro-scenario (Figure
9 in Appendix) and a right-turn merging micro-scenario
(Figure 10 in Appendix). We clearly see that the policy
of the right-turn micro-scenario is better than a naive con-
stant policy of 0.0 longitudinal and latitudinal acceleration,
because the ego vehicle will crash into the green obstacle
vehicle using the naive policy. The crash in the naive policy
is shown in the Appendix in Figure 11. Therefore, we see
that the network successfully learns a more optimal policy
than the naive policy.

5.2.1. BASELINE

Our baseline policy was a policy trained using DQN on the
full scenario, since such a policy is a close estimate of the
optimal policy on that scenario. Therefore, in a situation
of infinite samples, our baseline should be converge to the
optimal policy for that scenario and would be theoretically
better than our Q-decomposition policy. This is true because
Russel and Zimdars showed that if we trained two policies
separately and then sum them together to get an approxi-
mation of an optimal policy, the Q-decomposition policy
would be suboptimal because it is an approximation of the
optimal value function (Russell & Zimdars, 2003).

We successfully trained a baseline policy using DQN di-
rectly on the full scenario. Using the baseline policy (Figure
7), the ego vehicle reached the goal position in 7 timesteps
with an evaluation reward of .973. The average rewards over

https://github.com/PeggyYuchunWang/Deep-HRL-for-Scene-Decomp
https://github.com/PeggyYuchunWang/Deep-HRL-for-Scene-Decomp

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

Table 1: Results

Policy Name Evaluation Reward Timesteps

Baseline DRL 0.973 7
Q-Decomposition 0.968 9

Lane Change 0.960 8
Right Turn Merge 0.970 8

Figure 5. Evaluation reward and number of timesteps taken to
reach goal for different scenarios. Baseline DRL refers to the
policy achieved by training DQN on the composite scenario (Fig-
ure 7) and Q-Decomposition refers to the policy extracted from a
fusion of the state-action value functions of the micro-scenarios
(Figure 8). Lane change refers to the DQN policy trained on the
two-lane change micro-scenario (Figure 9 in Appendix). Right-
turn merge refers to the DQN policy trained on the right-turn
single-lane micro-scenario (Figure 10 in Appendix).

Figure 6. Average Reward for Scenarios trained using DRL

time for each of the scenarios trained using DQN are shown
in Figure 6.

5.2.2. Q-DECOMPOSITION

We then implemented Q-decomposition using Algorithm
2, where we passed in the micro-policy of the two-lane
change micro-scenario, the micro-policy of the single-lane
change right-turn micro-scenario, and the initial state of
the full composed scenario. The architecture of the Q-
decomposition Network is shown in Figure 4. The visual-
ization of the micro-policies may be found in the Appendix.
After summing up the Q-networks functions of each of the
micro-scenarios, we extracted a policy of the composed
scenario by taking the argmax of the combined Q-network.
We see that using the composed policy (Figure 8), the ego
vehicle successfully reached the goal in 9 timesteps with an
evaluation reward of .968.

Our results are shown in Figure 5. All of the four policies
enabled the agent to successfully reach the goal in its cor-
responding scenario. We compared the evaluation reward
and number of timesteps taken to reach the goal in each
of the four policies. The policies are the baseline policy
(Figure 7), Q-decomposition policy (Figure 8), lane-change
micro-policy (Figure 9 in Appendix), and right-turn merge

Figure 7. Baseline Policy, starting from top left frame 1 to bottom
left frame 7

micro-policy (Figure 10 in Appendix).

We also showed the results of our training data for the three
policies trained using DQN over 1 million iterations. Av-
erage rewards for the baseline policy, lane-change micro-
policy, and right-turn merge micro-policy over time are
shown in Figure 6. The evaluation reward and loss over
time are shown in the Appendix.

5.3. Discussion of Results

We see that our baseline policy is slightly better than the
policy using Q-decomposition, as shown in the 7 timesteps
as compared to the 9 timesteps and .973 evaluation reward
compared to the .968 evaluation reward. This is expected
as the policy trained using DQN on that specific scenario
will perform well. If we consider the baseline policy as
a close to optimal policy, we see that the policy extracted
using Q-decomposition is very close to the to the optimal
policy in terms of performance. Q-decomposition is also
computationally more efficient than training DQN on the
composed scenario, since it does not require retraining of
the entire Q-network and rather just sums the Q-networks
of the simpler policies.

We also see that utility decomposition is less expensive
to compute. Once the micro-policies are extracted, Q-

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

Figure 8. Visualization of the Q-decomposition policy. Starting
from top left frame 1 to bottom left frame 9.

decomposition fuses them together without any additional
training. However, using the baseline approach of solving
for a close-to-optimal policy requires training for 1 million
iterations, taking 45 minutes on a Macbook Pro.

This shows the tremendous power of Q-decomposition,
where we are able to approximate the optimal policies online
of many complex scenarios from simple micro-scenarios
trained offline, even if we have not seen the more complex
scenario before. This has many applications especially in
the field of autonomous driving. A key limitation of the base-
line policies trained using DQN or rule-based approaches is
that they only work for the scenarios they were trained on
and perform poorly on other scenarios. They are not able to
generalize. Q-decomposition is able to address this limita-
tion by ensuring that we will always be able to generalize
from every scenario, if we have a decomposition function
that decomposes a complex scenario onto trained micro-
scenarios. We then would be able to develop a city-wide
policy by composing scenarios from a set of micro-policies.

6. Conclusions and Future Work

Utility decomposition methods efficiently find approximate
solutions to decision making problems when the complex
problem can be broken down into simpler problems. In this
study, we have shown that once a set of solutions can be
computed on a set of micro-scenarios, the micro-policies
may be combined to solve a harder problem of a complex
road scenario. Although these methods have been applied
to other tasks, in this study we created a novel technique
to generalize utility decomposition to autonomous driving
policies using scene decomposition.

Our ultimal goal for this project is to compose a general city-
level policy based on several micro-policies. To accomplish
this goal, we need to learn several other low-level policies
on micro-scenarios such as roundabout scenarios, left-turn
scenarios, and stop intersection scenarios. We also plan
to investigate an efficient scene decomposition algorithm
that is able to automatically decompose a high-level scene
into a micro-scenario with efficiency and high degrees of
accuracy.

Additionally, to achieve the scene decomposition algorithm,
we will develop a formalism for state decomposition for
urban driving and investigate efficient state representation,
such as using spatial or topical representation of scenarios.
We also want to investigate how to these policies will in-
teract with different driver models, a stochastic world, and
multiple agents. We also will investigate how to generalize
based on partial observability instead of full observability.

Acknowledgements

A tremendous thank you to my mentor Maxime Bouton
for all his help and input, as well as conceiving the idea
of this interesting project. A tremendous thanks as well to
Professor Mykel Kochenderfer for allowing me to work on
this independent project in conjunction with CS191W and
providing help and mentorship. Thanks as well to Mary
McDevitt for giving revision suggestions, especially during
finals week.

References

Bouton, M., Julian, K., Nakhaei, A., Fujimura, K., and
Kochenderfer, M. J. Utility decomposition with deep cor-
rections for scalable planning under uncertainty. CoRR,
abs/1802.01772, 2018. URL http://arxiv.org/
abs/1802.01772.

Chen, J., Wang, Z., and Tomizuka, M. Deep hierar-
chical reinforcement learning for autonomous driving
with distinct behaviors. pp. 1239-1244, 06 2018. doi:
10.1109/1VS.2018.8500368.

http://arxiv.org/abs/1802.01772
http://arxiv.org/abs/1802.01772

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

Fisac, J. F., Bronstein, E., Stefansson, E., Sadigh, D.,
Sastry, S. S., and Dragan, A. D. Hierarchical game-
theoretic planning for autonomous vehicles. CoRR,
abs/1810.05766, 2018. URL http://arxiv.org/
abs/1810.05766.

Kochenderfer, M. J. Decision making under uncertainty:
theory and application. MIT press, 2015.

Liaw, R., Krishnan, S., Garg, A., Crankshaw, D., Gonzalez,
J. E., and Goldberg, K. Composing meta-policies for
autonomous driving using hierarchical deep reinforce-
ment learning. CoRR, abs/1711.01503, 2017. URL
http://arxiv.org/abs/1711.01503.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G.,
Foerster, J. N., and Whiteson, S. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement
learning. CoRR, abs/1803.11485, 2018. URL http:
//arxiv.org/abs/1803.11485.

Russell, S. J. and Zimdars, A. Q-decomposition for rein-
forcement learning agents. In Proceedings of the 20th
International Conference on Machine Learning (ICML-
03), pp. 656-663, 2003.

Schwarting, W., Alonso-Mora, J., and Rus, D. Plan-
ning and decision-making for autonomous vehicles. An-
nual Review of Control, Robotics, and Autonomous
Systems, 1(1):187-210, 2018. doi: 10.1146/
annurev-control-060117-105157.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M.,
Zambaldi, V. E., Jaderberg, M., Lanctot, M., Sonnerat,
N., Leibo, J. Z., Tuyls, K., and Graepel, T. Value-
decomposition networks for cooperative multi-agent
learning. CoRR, abs/1706.05296, 2017. URL http:
//arxiv.org/abs/1706.05296.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wang, P, Chan, C., and de La Fortelle, A. A rein-
forcement learning based approach for automated lane
change maneuvers. CoRR, abs/1804.07871, 2018. URL
http://arxiv.org/abs/1804.07871.

Wolf, P., Kurzer, K., Wingert, T., Kuhnt, F., and Zllner,
J. Adaptive behavior generation for autonomous driving
using deep reinforcement learning with compact semantic
states. 06 2018. doi: 10.1109/IVS.2018.8500427.

Zhang, A., Lerer, A., Sukhbaatar, S., Fergus, R., and
Szlam, A. Composable planning with attributes. CoRR,
abs/1803.00512, 2018. URL http://arxiv.org/
abs/1803.00512.

Contributions
e Peggy (Yuchun) Wang

— Implemented full project and algorithms in Julia
codebase

— Wrote and edited paper and poster

e Maxime Bouton (PhD student mentor, not in CS234)

Provided project vision and ideas

Suggested literature review and code package re-
sources

Mentored and discussed ideas about algorithms,
simulation, and implementation

— Gave input on edits for paper and poster

o Prof. Mykel J. Kochenderfer (Faculty advisor, not in
CS234)

— Faculty advisor

— Provided mentorship and opportunity to work on
independent project in conjunction with CS191W

http://arxiv.org/abs/1810.05766
http://arxiv.org/abs/1810.05766
http://arxiv.org/abs/1711.01503
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1804.07871
http://arxiv.org/abs/1803.00512
http://arxiv.org/abs/1803.00512

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

Appendix

Figure 10. Visualization of the right-turn merge micro-policy.
Starting from top left frame 1 to bottom right frame 8.

Figure 11. Visualization of the constant velocity policy crash for
the right-turn merging micro-scenario.

Figure 9. Visualization of the left lane-change micro-policy. Start-
ing from top left frame 1 to bottom right frame 8.

Table 2: DQN Hyperparameters

Hyperparameter Value

Fully Connected Layers 2

Hidden Units 32

Activation functions Rectified linear units
Replay buffer size 400,000

Target network update frequency 3,000 episodes
Discount factor 0.9

Number of training steps 1,000,000

Learning rate 0.001

Prioritized replay a=0.63=1x10"6
Exploration fraction 0.5

Final € 0.01

Figure 12. Hyperparameters of the Deep Q-Learning Network

Hierarchical Deep Reinforcement Learning through Scene Decomposition for Autonomous Urban Driving

eval_reward

0000 1000k 2000k 3000k 4000k 6000k G000k 7000k 8000k 9000k 1.000M

Figure 13. Evaluation Reward for Scenarios trained using DQN

loss
0550
0500
0450
0400
0350
0300
0250

0200

BUNIT e e

~ | ¢

0000 1000k 2000k G000k 4000k 5000k 6000k 7000k 8000k 9000k 1.000M

Figure 14. Loss for Scenarios trained using DQN

