VacAltionary: Al Travel Itinerary Planning Based
on Ant Colony Optimization™

Peggy (Yuchun) Wang
Department of Computer Science
Stanford University
peggy.yuchun.wang @cs.stanford.edu

VacAltionary

Lauren Zhu
Department of Computer Science
Stanford University
laurenz@cs.stanford.edu

Input Data About

Your personal travel itinerary planner.

Easy one-click booking for transportation and lodging.

Cities: From

Time Limit:

Departure Time

Budget (USD): 5000.00

To

Arrival Time

Abstract—TItinerary planning is a huge headache for travelers,
especially with budget and time constraints. Existing commercial
travel planners offer flight planning separately from lodging
planning, so users have to manually search and book lodgings
after deciding on a flight itinerary. Instead of considering
planning for flights and lodgings separately, we generate a travel
itinerary based on the best utilities of both. We take into account
a combination of flights, cities, and lodgings while adhering
to traveler constraints. We show that our approach, based on
the Ant Colony Optimization (ACQO) algorithm, generates high
quality travel itineraries both quantitatively and qualitatively.
Specifically, we maximize utility as well as the variety of cities
traveled, comparing our results with a Greedy Search baseline.
In the future, we plan to expand this project into a product with
day-to-day city-level itinerary planning and true booking ability
for flights and lodgings.

I. INTRODUCTION

Often times, a group of travelers has a brainstorming list of
desired destinations, where some subset of those destinations
will become the final itinerary. The problem is that especially
with a large initial set of potential destinations, the process
of creating the final itinerary can be very time consuming
and tedious. To alleviate this burden, VacAltionary is a travel
planning optimizer that takes in a set of user inputs for
travel plans and outputs several optimal traveling schedule
itineraries.

*Github Link to Code: https://github.com/Peggy YuchunWang/vacAltionary

As an example of a use case for our product, consider
the following story as told by Lauren: My senior project
team was tasked with presenting a software demo in Munich.
With a two week available time window of travel, we wanted
to travel to as many cities and places as possible that was
feasible and reasonable according to the following constraints:
time, convenience, price, and personal preference. After many
weeks of discussion and quarrel as busy students, we finally
scheduled locations, flights, and lodging. However, with access
to VacAltionary we could input a list of all our potential des-
tinations and specify that we needed to start from Munich. We
would receive a list of itineraries that would meet our time and
destination constraints as well as optimize for the parameters
we specified. This would have saved us an incredible hassle
of narrowing down from the infinite choices that we had, and
provide us with an optimal set of itineraries to choose from.

We formulate the travel itinerary problem as an optimization
problem that maximizes total utility of an itinerary given
traveler constraints of budget, time, and provided start and
end cities. This problem can be formulated as an Orienteering
Problem, a variant of the Traveling Salesman Problem. We
modeled the problem as a graph search problem, where cities
are the nodes of the graph, and flights and lodgings are directed
edges of the graph. Each edge has a utility based on a weighted
combination of price and other attractiveness factors. The
output is at most ten top itineraries returned by the algorithm,

https://github.com/PeggyYuchunWang/vacAItionary

consisting of the path, including cities, flights, and lodgings.

To experiment with methods of solving this problem, we
implemented both a Greedy Search Algorithm and an Ant
Colony Optimization (ACO) algorithm. We conclude that
ACO produces better travel itineraries than Greedy, both
qualitatively and quantitatively—in terms of average utility
and average path length. Considering a case study of ACO
and Greedy, we also see more diversity in cities and flight
paths with ACO, whereas Greedy tends to have similar flight
paths and optimizes for different lodgings. The downside to
ACO is that it runs exponentially longer than Greedy, which
is a concern if it will be deployed in real systems. However,
we could run ACO in parallel, mitigating those concerns.

II. RELATED WORK

Several existing commercial travel planners attempt to solve
the travel itinerary planning problem, specifically in regards
to multi-city flights. Google Trips' offers the option to book
flights with multiple cities as well as lodging and vacation
package recommendations. However, users have to manually
specify starting and ending cities as well as dates for each
leg of the multi-city flight, and then manually choose a flight
out of all possible flights. Furthermore, users have to book
lodgings separately from flights, specify additional constraints,
and manually pick one lodging out of all possible listings. This
process, although perhaps fair for a simple trip, is tedious,
manual, and suboptimal when expanded to the task of multi-
city travel itinerary planning.

Eighty Days? and Kiwi’s Nomad Search® search for multi-
city itineraries in Europe, and output several top itineraries
with flight and train transportation between cities as well as the
total price. This is almost exactly what we want in a multi-city
itinerary planner. However, there are two main limitations with
these service-travelers cannot input budget constraints, and
neither service takes into consideration lodgings. Instead, these
sites link to Booking.com and Airbnb and require travelers
to manually book their accommodations after booking their
flights. Although these services are an upgrade compared with
Google Trips, not being able to search for lodgings while
searching for flights and transportation results in suboptimal
total costs and still requires manual booking from the traveler.

VacAltionary outputs several optimal multi-city itineraries
while taking into account budget constraints as well as lodging
options, addressing both the limitations described previously.
We note that the formulation of the multi-city travel itinerary
problem can be considered to be an Orienteering Problem (OP)
[1], a special case of the Traveling Salesman Problem (TSP).
OP is a routing problem where the goal is to find the best path
(defined as having the maximum score) in a graph, where a
subset of nodes are visited and the time limit is not exceeded.
Recent variations and applications of the OP are explained in
[2], including the Tourist Trip Design Problem. The TSP, OP,

Thttps://www.google.com/travel/
Zhttps://app.eightydays.me/
3https://www.kiwi.com/en/nomad/

and its variants are NP-hard [3]. However, several algorithms
give very good approximations to the optimal solution.

S5 gnglish (United States) USD$ Holp Starred Manage

Kiw1 - com ol Cors Raoms Kivicom Stories

Nomad v Economy v &1 v

Los Angeles
Startip Th May 2

canana e

a =
.

il © mapbox © Mapbox © OpenStreethta

An example interaction with Kiwi Nomad demonstrates limitations
with travel itinerary planning. Travelers cannot input budget
constraints, and must consider lodgings separately and after flights.

Previous work has been done on developing orienteering
algorithms that optimize itineraries for multi-day trips based
on Google historical visit data and Foursquare data [4]. The
authors formulated the problem as a graph search with start
and end nodes, duration costs, and time costs. However, this
algorithm was applied in the case of multiple day itineraries
with points of interest (POI) and attractions within the same
city. Although our problem can be formulated similarly, our
application is inter-city travel rather than intra-city travel.

An example paper that generates itineraries with multiple
cities has been done in [5], where constraints such as time
spent on each city and and travel cost are considered. The
authors use a genetic algorithm called NSGA-II to find several
Pareto optimal travel itineraries consisting of transportation
and lodging stays in between cities.

Although we initially considered using the NSGA-II genetic
algorithm to generate optimal travel itineraries, we found
that ACO is more reliable and more effective than genetic
algorithms [6]. Additionally, several examples of ant colony
optimization algorithms were used for variants of the Traveling
Salesman Problem and Orienteering Problem [7]-[10].

In particular, Yang et al. successfully implemented an
ACO algorithm for both inter-city travel and intra-city travel
itineraries, where they considered transportation, lodging, and
attractions inside cities [10]. Considering the successes of
ACO in the previous experiments, and the similarity of prob-
lem formulation, we decided to implement ACO for this paper.

III. APPROACH

This is a unique task with a set of complex data types, so we
carefully designed our models, data, and algorithms. This sec-
tion is split up into four parts. The first is the itinerary planning
model, which outlines the different class types and utilities we
create for flights, lodgings, and itineraries. The second section
discusses why and how we generate data. We then discuss
our two algorithmic approaches to optimizing this problem -

https://www.google.com/travel/
https://app.eightydays.me/
https://www.kiwi.com/en/nomad/

a Greedy Search algorithm for a baseline comparison and an
improved Ant Colony Optimization Algorithm [11].

We first generated a random set of data points including
flight information and lodgings for several destinations in
Europe. Then, we ran our algorithms on this data to generate
several optimal itineraries, which would ideally resemble a
Pareto frontier. Since our utility function is modeled as a
weighted average of multiple discrete objectives, an utopia
point is often not attainable and optimizing one component
typically requires a trade-off in another component. Therefore,
our output itineraries will approximate different points along
the Pareto frontier. From there the user can choose their
favorite itinerary.

A. lItinerary Planning Model Design

We modeled the itinerary object as having its own class.
Each itinerary in our implementation is built with several
different components: cities, transportation between cities, and
lodgings at each city (besides the start and end cities).

Listing 1: Itinerary Class

class Itinerary:

def __init__ (self, transportation=[],

cities=[], lodgings=[], price=0,
utility=0) :
self.dates = # dates of travel

self.transportation = #list of flights
self.lodgings = #list of lodgings
self.cities = #list of cities
self.price = #total price

self.utility = #total utility

We built classes for each of these three components as
well. Note that in our preliminary implementation, flights are
the only form of transportation, although this could be easily
expanded to other forms of transportation in the future (trains,
buses, etc). A complete itinerary as a search result will have
the populated dates of travel, the list of flights taken, the list
of lodgings at each destination city, the list of cities visited,
the total price of flights and lodging, and the total utility of
the trip.

Pseudocode for our itinerary class can be found in Listing
1. Pseudocode for our city, lodging, and flight components can
be found in Listing 2.

Listing 2: City, Lodging, and Flight (Transportation) Classes

class City:
def _ _init_ (self, name, score,
medianStay) :
class Lodging:
def __init__ (self, name, address, city,
prices, datesAvailable, roomType,
numOccupancy, type, tier):
class Transportation:
def __init__ (self, departDatetime,
departLoc, arriveDatetime, arriveloc,
price):

class Flight (Transportation):
def __init__ (self, departDatetime,
departLoc, arriveDatetime, arriveloc,
price, airline, flightNumber):

Because this is a path planning problem, we design what a
path looks like within an itinerary. We define a complete path
as a repeated sequence of alternating flights and lodgings. To
visualize this as a graph traversal, we define the following:

« Cities are nodes

« Flights are directed edges from city X to city Y

o Lodgings are self-loops from city X to city X

o After taking a flight, we must take exactly one self-loop
Lodging edge

« We do not visit the same city twice, unless it is the same
start and end

Each edge must have some utility, and for consistency we
keep all of these values positive. Each edge type (flight or
lodging) has a utility function, described below.

1) Flight Utility: In order to design the flight utility func-
tion, we take into consideration the features of a flight that
would make it a better choice and thus give it a higher utility.
Given three factors of a flight—price, destination, and dura-
tion—we can intuitively come to the following conclusions:

o Lower price has higher utility
o More desirable arrival destination has higher utility
o Shorter duration has higher utility

We weigh each of these features and sum them to calculate
utility U(f) of a flight f. Thus, given price p, destination
desirability score s, duration d, and respective flight weights,
our utility function is as follows:

Wp wq
Y= eI gy

We used w, = 2000, ws, = 4, and wg = 2000. Notice
that we divide by p(f) and d(f) because those features are
inversely correlated with utility. The values of w are chosen
in a way that modifies each component to be of a fair fraction
of the actual utility. In our case, we assume in this utility
function that destination score s is the main driver of a high
flight utility, so wss(f) makes up a larger part of U(f) than
the other two (people tend to book trips by destination, not
wherever flights are cheapest).

2) Lodging Utility: Similarly to the flight utility function,
we must understand which features are directly or inversely
correlated with utility. We simplify the problem to ignore
the room type, so given the remaining three factors of a
lodging—price, tier, and occupancy—we conclude:

o Lower price has higher utility

o Higher tier has higher utility

o Higher occupancy has higher utility

We weigh each of these features and sum them to calculate
utility U(1) of a lodging I. Thus, given price p, lodging tier

Table I: Flight Data Example

Flight 1 Flight 2 Flight 3
Airline 8] 0] FA EM
Flight Number UD4869 FA8591 EM7954
Departure Time 01-17 20:26 01-05 23:04 01-30 15:33
Arrival Time 01-17 21:03 01-06 03:51 01-30 19:20
Departure Loc Florence Budapest Amsterdam
Arrival Loc Edinburgh Zurich Budapest
Price 47.56 314.42 82.59
Travel Time 0:37 4:47 3:46

Each flight has randomly generated strings for the airline and flight number. Random cities are chosen from a set for
departure and arrival locations, and a date and random but reasonable duration are chosen for the flight given a time frame.

Table II: Lodging Data Example

Lodging 1 Lodging 2 Lodging 3
Name The Respectful The Stable The Festive
Address 9235 Zebra Plaza 8613 Rain Bend 207 Table Landing
City Paris Barcelona London
Lodging Type Hotel Hostel Airbnb
Room Type Suite Normal Room Apartment
Occupancy 6 4 6
Tier 4 2 3

Each lodging has randomly generated strings for the name and address. The location is a random city. The room type,
availability, occupancy, type, and tiers are also randomly chosen. Each lodging has a set of available dates, each with a
different price (not shown).

t, occupancy o, and respective lodging weights, our utility
function is as follows:

U(D) = 8+ pat(D) + po0(l)

We used p,, = 20000, pp = 15, and 1, = 2.5. Notice again
that we divide by p(l) because price is inversely correlated
with utility, whereas tier and occupancy are not. The weights
1 are chosen to give equal weight to the price and tier, whereas
the occupancy or size of the room matters less.

B. Data Generation

Because our focus of the project is to implement Ant Colony
Optimization and compare it to our Greedy Baseline algorithm,
it made sense to focus our implementation on the algorithms
instead of on the data. Using real data entails web scraping
for flights and lodgings across many different platforms, so
we decided to generate our own data. We do, however, want
our simulated data to be as realistic as possible. We take that
into consideration during the generation process.

1) Flight Data: We generated 1000 flights, which have
a departure and arrival location randomly drawn without
replacement from a set of 16 European cities. In our graph,
a flight is formulated as a directed edge from one city node
to another. The flight object contains an airline, flight number,
departure and arrival time, departure and arrival city, price,
and travel time. Three sample flights are shown in Table I.

2) Lodging Data: We also generated 200 lodging options in
total across the 16 cities. A lodging is formulated in the graph
as a self-loop edge at a city node. The lodging object contains
a name, address, city, lodging type, room type, occupancy,
and tier. It is available on a certain set of dates, each date
with a different price associated with it. Three sample lodging
options are shown in Table II.

C. Greedy Algorithm

Our Greedy Search algorithm is an original implementa-
tion that resembles a greedy version of Dijkstra’s algorithm.
Specifically, it is an adaptation of breadth-first search that uses
a priority queue and greedily builds and sorts itineraries based
on utility.

As shown in Algorithm 1, we begin with an empty priority
queue and populate it with itineraries that solely consist of all
flights leaving from the start city. Those are then appended to
the priority queue, giving priority to the flights with higher
utility. Until we have the maximum number of itineraries we
wish to keep, we continue to greedily prioritize flights and
lodgings with higher utility until we have created a full list of
complete paths.

D. Ant Colony Optimization Algorithm

We implemented the Ant Colony Optimization algorithm,
using the formulation in Algorithms for Optimization as a
guide [11]. Adaptations were made to generic ACO for the
specific problem, including:

Algorithm 1 Greedy Algorithm Pseudocode

def greedyBaseline (num_its_keep=10) :

queue = PriorityQueue ()
complete_its = []

for £ in start_flights:
it = Itinerary()
queue.put ((-f.utility, 1it))

while not queue.empty () and len(complete_its)
if it.lastcity == endcity:
complete.append(it)

next_flights = filterFlights (nextstart,
sort (next_flights)

for £ in next_flights:
flight_it = copy(it)
flight_it.append(f) #add flight to it
next_lodgings =
sort (next_lodgings)

for 1 in nextLodgings:
lodging_it = copy(flight_it)
lodging_it.lodgings.append(l)

if lodging_it.price <= budget:
queue.put ((-lodging_it.utility,

return sort (complete)

#higher utility =

enddate,
#decreasing order sort by utility

filterLodgings (currcity,
#decerasing order sort by utility

higher priority

< num_its_keep:

currcity, it)

starttime, f.departtime)

#add lodging to it

lodging_it))

#sort final list by utility and return

o Adapting pheromones and priors to fit both flights and
lodgings

o Using utility instead of inverse path length

« Ranking top paths

o Traversing a lodging edge after a flight edge, and vice
versa (except at the end city)

o Tuning hyperparameters

The full ACO pseudocode is listed in Algorithm 2. The
helper functions — edge_attractiveness() and run_ant() — are
listed in the Appendix in Algorithms 3 and 4, respectively.

IV. EXPERIMENTS

We ran experiments to compare Greedy and ACO both
quantitatively and qualitatively. Our ACO Hyperparameters
are shown in Table III. Our algorithm inputs include the start
city, end city, start time, end time, and budget. We ran both
algorithms on all possible pairwise combination of the 16
European cities for the start and end cities, leading to a total
of 256 different input combinations. We set our start time to
January 03, 2020 and our end time to January 17, 2020, with
a budget of 3000.00. We allowed both algorithms to return a
maximum of 10 optimal itineraries.

For each of the 16 starting cities, we recorded the average
price, utility, path length, and runtime across the 16 ending
city combinations in Tables VII and VIII in the Appendix.

For clarity, we also averaged these results across all 256 runs
for each algorithm.

Table III: ACO Hyperparameters

Ants ‘ Iterations ‘ « ‘ B ‘ p
1000 | 250 [1.0 | 1.1 | 0.01

V. RESULTS AND DISCUSSION

With a total of 16 different starting cities, ACO is able
to find better average itineraries (defined as having a higher
utility) for 15 of them compared with Greedy. The itinerary
prices of ACO are also higher for 15 of the starting cities, and
the path lengths of ACO itineraries are consistently longer,
meaning that the itineraries visited more cities within the
same budget. One drawback of ACO is the runtime, which is
significantly slower than our greedy implementation, although
runtime may be significantly sped up with running ants in
ACO in parallel. These numbers can be found in Tables VII
and VIII in the Appendix, and they are further summarized
below in Table IV.

Table IV shows our global experimental run across both
algorithms. ACO produces itineraries that are, on average, of
higher utility and higher quality. That is, it is better optimized
for cheaper and shorter flights to desirable cities, as well as

Algorithm 2 Ant Colony Optimization Pseudocode

def ant_colony_optimization (num_its_keep=10,
rho=0.01) :
start_flights = filterFlights(startdate,
prior = {} ieta

pheromones = {} #tau
visited = []

#initialize prior and pheromones

for flight in flights:
pheromones[flight] = 1,

for lodging in lodgings:
pheromones[lodging] = 1,

prior[flight] =
prior[lodging] =
top_paths = []

for i in range(iters):
A = edge_attractiveness (pheromones,

for key, p_val in pheromones:
pheromones [key] = (l-rho)x*p_val
for ant in range (num_ants) :
it, pheromones =

if it: # if ant found full path
if len(top_paths)
top_paths.pop ()
if len(top_paths)
sort (top_paths.append(it))
visited.append(it)

return top_paths

num_ants=1000,

enddate,

prior,

run_ant (pheromones, A)

iters=500, alpha=1.0, beta=1.1,

startcity)

flight.utility

lodging.aveUtility #ave util over avail days

alpha, beta)

key is flight/lodging

== num_its_keep and it.utility > top_paths[-1].utility:

< num_its_keep and it not in visited:
#sort by utility

Table IV: Comparison of Greedy Baseline and ACO

‘ Price Utility Path Length (cities) = Runtime (s)
Greedy | 2190.64 1244 4.73 0.43
ACO 244443 1457 5.30 84.06

Values above are averages across 16 start cities, equivalent
to averaging across 256 combinations of start and end city.
Note that path length includes the start and end cities.

cheaper, larger, and more luxurious lodgings all while staying
within the budget and time constraints. Regardless of whether
the data is real or simulated, it is very unlikely that there is an
achievable utopia point. However, ACO is much more likely
to find itineraries that lie closer to the Pareto frontier. This is
implied from the nature of the utility function designs.

A. Case Study

Because our algorithms optimize numerical metrics, we
must manually inspect the itineraries to ensure they are provid-
ing better flight and lodging features that are associated with
higher quality trips. Our case study will take a closer look at

sample algorithmic runs for Greedy and ACO for itineraries
from Edinburgh to Venice, with a budget of 4000.00.

We requested the five best itineraries from both Greedy
and ACO. The two tables in V clearly illustrate how ACO
outperforms Greedy from a utility perspective, especially in
this case where a higher budget of 4000 gives ACO more
freedom to explore more potential paths (ACO uses the same
hyperparameters from the experiments, with a change to 500
iterations). We can see how the Greedy algorithm lacks diver-
sity in its paths because it terminates once it finds a sufficient
number of itineraries. ACO, however, runs a specified number
of ants for a specified number of iterations.

We now analyze the flights of the best itinerary of Greedy
and of ACO in Table VI. Greedy fails to explore the many
potential paths that could lead to a diverse itinerary within the
given budget. It chooses the highest utility flight as the first leg,
and eventually finds a complete path. This eliminates many
other paths that would potentially increase utility via later
legs or undiscovered lodgings (not shown). This juxtaposition
displays how ACO is superior as a direct method that searches
across a very large space of paths and still finds high utility
itineraries under the budget constraints.

These tables show the flight utility function at play, and

Table V: Greedy vs. ACO Top 5 Itineraries from Edinburgh to Venice

Path | Price | Utility
Rank | | E»Ba—A—V | 1059.65 | 1182
Rank 2 | E»Ba—A—V | 1180.65 | 1148
Rank 3 | E»Ba—A—V | 1346.65 | 1144
Rank 4 | E»Ba—A—V | 1464.65 | 1133
Rank 5 | E»Ba—A—V | 112365 | 1125

(a) Top 5 itineraries of Greedy Baseline. Notice all
the paths are similar, and the utilities similarly low.

\ Path | Price | Utility
Rank 1 | E-»F—Ba—Bu—A—R—V | 2917.62 2510
Rank 2 E—F—Ba—A—R—V 3381.27 2050
Rank 3 E—Ba—Bu—A—R—V 2665.42 2049
Rank 4 E—»Ba—Bu—A—R—V 2740.42 2003
Rank 5 E—Ba—Bu—A—R—V 3145.42 1981

(b) Top 5 itineraries of ACO. The paths are longer and much
more diverse, yet have significantly higher utility.

Table VI: Greedy vs. ACO Best Itinerary from Edinburgh to Venice

Leg | F Price | F City Score | F Duration | F Utility
E—Ba | 1847 55 1:16:00 354
Ba—A | 288.94 42 1:41:00 195
A=V | 3024 73 2:06:00 374

(a) Flights from the best itinerary from Greedy Baseline.
F refers to flight.

demonstrate how flight prices, destination score, and flight
duration affect the overall desirability of the flight.

VI. CONCLUSION

As seen from the results, Ant Colony Optimization produces
better itineraries than Greedy Baseline when optimizing over
flights and lodging in multiple cities. The itineraries generated
by ACO are realistic and diverse, and are a starting point for a
one-step itinerary planner for flights and lodging. Additionally,
our aim is to eventually deploy this project on the web and
include intra-city planning with attractions and restaurants.

A. Future Work

Since we eventually want to turn this project into a product,
Peggy made a website mockup using HTML, CSS, and
JavaScript (shown as an image in the first page of this
paper and also in the Appendix). Users are able to click
the “Explore” button and receive a list of example output
itineraries.

For the future, our goal is to also take into account traveler
preferences (such as their preferred city or type of lodging)
as inputs and produce a custom utility function based on
those inputs and real-world data. Weights on utility could be
formulated via a slider input UI on the importance of certain
factors to the traveler.

In a real-world deployment setting, it is likely that running
time would matter as much as itinerary quality. One way to
speed up ACO would be to implement parallel processing for
each ant, which would speed up the running time linearly
with the number of cores available. We can also run both
ACO and Greedy and pick the best itineraries between both
algorithms, or experiment with additional algorithms used for
the Traveling Salesman Problem or Orienteering Problem.

To make the system run in real-time, we would also need to
incorporate real-time web searching and web APIs of flights
and lodgings, which updates by the second. Additionally, we

Leg ‘ F Price ‘ F City Score ‘ F Duration ‘ F Utility
E—F 44.48 51 0:40:00 299
F—Ba 73.05 55 0:30:00 314

Ba—Bu | 392.59 65 3:57:00 273
Bu—A 153.82 42 2:41:00 193
A—R 54.48 75 3:47:00 346
R—V 104.20 73 0:50:00 351

(b) Flights from the best itinerary from ACO. F refers to flight.

will want to incorporate additional transportation options such
as trains and buses and also expand to intra-city planning
with day-to-day itineraries incorporating attractions and other
experiences. We see a lot of potential in this project going
forward, and plan on continuing to work on this project after
the end of the class.

CONTRIBUTIONS

Peggy and Lauren both implemented class types and built
the Greedy Baseline and ACO algorithms for flights and
lodgings. This was the bulk of the project.

On an individual level, Peggy ran full experiments for
Greedy and ACO results, created the website mockup and
design, and did an extensive literature review (the latter two
as the additional contribution for 4 units).

Lauren performed the case study, comparing qualitative
Greedy and ACO results.

ACKNOWLEDGMENTS

Thanks to Professor Mykel Kochenderfer for all his sug-
gestions, help, and inspiration throughout the process, and for
his excellent class and teaching! Thanks also to the Stanford
CS361/AA222 Course Staff and TAs for all their feedback and
encouragement throughout the process.

REFERENCES

[1] T. Tsiligirides, “Heuristic methods applied to orienteering,” Journal of
the Operational Research Society, vol. 35, no. 9, pp. 797-809, 1984.

[2] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,”
European Journal of Operational Research, vol. 255, no. 2, pp. 315-332,
2016.

[3]1 A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff, “Approximation algorithms for orienteering and discounted-
reward tsp,” SIAM Journal on Computing, vol. 37, no. 2, pp. 653-670,
2007.

[4]

[5]

[6]

[8]

[9]

[10]

(11]

Z. Friggstad, S. Gollapudi, K. Kollias, T. Sarlos, C. Swamy, and
A. Tomkins, “Orienteering algorithms for generating travel itineraries,”
in Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, ser. WSDM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 180-188. [Online].
Available: https://doi.org/10.1145/3159652.3159697

X. Li, J. Zhou, and X. Zhao, “Travel itinerary problem,” Transportation
Research Part B: Methodological, vol. 91, pp. 332 — 343,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0191261515302125

R. Putha, L. Quadrifoglio, and E. Zechman, “Comparing ant colony
optimization and genetic algorithm approaches for solving traffic signal
coordination under oversaturation conditions,” Computer-Aided Civil
and Infrastructure Engineering, vol. 27, no. 1, pp. 14-28, 2012.

Y.-C. Liang and A. E. Smith, “An ant colony approach to the
orienteering problem,” Journal of the Chinese Institute of Industrial
Engineers, vol. 23, no. 5, pp. 403—414, 2006. [Online]. Available:
https://doi.org/10.1080/10170660609509336

Z. C. S. S. Hlaing and M. A. Khine, “An ant colony optimization algo-
rithm for solving traveling salesman problem.” Fifth Local Conference
on Parallel and Soft Computing, 2010.

Y. Chen, W. Sun, and T. Chiang, “Multiobjective orienteering problem
with time windows: An ant colony optimization algorithm,” in 2015
Conference on Technologies and Applications of Artificial Intelligence
(TAAI), 2015, pp. 128-135

L. Yang, R. Zhang, H. Sun, X. Guo, and J. Huai, “A tourist itinerary
planning approach based on ant colony algorithm,” in International
Conference on Web-Age Information Management. Springer, 2012
pp. 399404

M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization.
Mit Press, 2019.

APPENDIX

Table VII: Greedy Results

Start City | Avg Price | Avg Utility | Avg Path Length | Avg Time (s)
Amsterdam 2434.30 1415.82 4.97 0.29
Florence 2398.97 1168.72 4.58 1.07
London 2483.26 1043.55 4.5 1.47
Edinburgh 2042.10 1125.88 4.45 0.16
Rome 2386.23 1158.62 4.7 0.78
Budapest 1792.08 1075.21 4.29 0.61
Prague 2274.38 1445.14 5.02 0.38
Berlin 1939.53 1122.49 4.36 0.14
Munich 2268.60 1542.34 5.24 0.18
Zurich 2166.33 1231.58 4.62 0.42
Barcelona 2052.26 1116.06 4.29 0.26
Venice 2341.30 1283.71 4.95 0.31
Athens 1872.08 1157.99 4.48 0.25
Paris 2160.48 1488.02 5.29 0.31
Nice 2130.97 1175.05 4.84 0.11
Dublin 2307.30 1361.33 5.05 0.21

Table VIII: ACO Results

Start City | Avg Price | Avg Utility | Avg Path Length | Avg Time (s)
Amsterdam 2537.72 1530.75 537 99.02
Florence 2400.27 1459.45 52 81.97
London 2516.93 1351.66 521 71.78
Edinburgh 2502.43 1501.3 5.41 78.05
Rome 2404.84 1499.03 5.53 79.76
Budapest 2366.80 1446.97 5.24 732
Prague 2514.56 1574.12 542 90.68
Berlin 2530.92 1584.33 5.57 106.41
Munich 2432.66 1535.41 5.31 96.56
Zurich 2444.17 1528.75 542 83.88
Barcelona 2282.62 1211.79 4.73 75.73
Venice 2341.20 1283.77 5.05 68.46
Athens 2433.73 1467.31 5.4 68.05
Paris 2464.40 1495.32 5.34 82.13
Nice 2481.98 1374.73 5.24 88.77
Dublin 2455.67 1467.13 525 100.49

VacAltionary InputData About
Algorithm Output

Itinerary
Florence Barcelona — Budapest +
Venice -+ Amsterdam - Edinburgh
Total Price: $3000.00

Itinerary

Florence — Barcelona —+ Budapest -

Venice -+ Amsterdam - Edinburgh
Total Price: $3000.00

Itinerary
Florence —+ Barcelona —» Budapest
Venice - Amsterdam —+ Edinburgh
Total Price: $3000.00

s Flghtar

Figure 1: Web Mockup

Algorithm 3 Edge Attractiveness (ACO) Pseudocode

def edge_attractiveness (pheromones,
alpha=1.0, beta=1l.1):
A = {}
for £ in flights:
v = (pheromones[f]*x*xalpha) =
(prior[f]xxbeta)
A[f] = v
for 1 in lodgings:
v = (pheromones[l]**xalpha) =
(prior[l] xxbeta)
A[l] = v
return A

prior,

https://doi.org/10.1145/3159652.3159697
http://www.sciencedirect.com/science/article/pii/S0191261515302125
http://www.sciencedirect.com/science/article/pii/S0191261515302125
https://doi.org/10.1080/10170660609509336

Algorithm 4 Run Ant (ACO) Pseudocode

def run_ant (pheromones, A):

it = Itinerary()
while len(it.cities) < len(allcities):
if it.lastcity == endcity: break

next_flights = filterFlights (nextstart, enddate, currcity, it)

if len(next_flights) == 0: #ant got stuck
return None, pheromones

attracts_f = [A[f] for f in next_flights]
it.append(np.random.choice (next_flights, 1, attracts_f))

#find lodging in between two already selected flights
if len(it.transportation) >= 2:
next_lodgings = filterLodgings (currcity, last_flight_end, next_flight_start)

if len(next_lodgings) == 0: #ant got stuck
return None, pheromones
attracts_1 = [A[l] for 1 in next_lodgings]

it.append (np.random.choice (next_lodgings, 1, attracts_1))

#update pheromones
for flight in it.transportation:
pheromones[flight] += 0.001xflight.utility
for lodging in it.lodgings:
pheromones|[lodging] += 0.00lxlodging.utility

if it.price <= budget:
return it, pheromones
else: #over budget
return None, pheromones

	Introduction
	Related Work
	Approach
	Itinerary Planning Model Design
	Flight Utility
	Lodging Utility

	Data Generation
	Flight Data
	Lodging Data

	Greedy Algorithm
	Ant Colony Optimization Algorithm

	Experiments
	Results and Discussion
	Case Study

	Conclusion
	Future Work

	References

