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Abstract

This report describes the autonomous UAV designed by Stanford University’s Aerial Intelligence and
Reconnaissance team in its first year competing in the AUVSI SUAS competition. The team’s goal was to
create a successful entry to the competition, minimize developmental costs, and create a novel approach
to path planning and computer vision. Six undergraduates and a graduate student drew experience
from different engineering disciples to create a low-cost aircraft that is capable of performing most of
AUVSI’s challenges. The aircraft, ”Shamu”, can autonomously navigate waypoints, avoid obstacles, and
automatically localize and categorize alphanumeric characters on the ground. The team developed a
novel variant of A* and various optimization techniques to plan and smooth an approximate globally
optimal path, and used computer vision algorithms including SURF, K-Means, and convolutional neural
networks to categorize and localize objects on the ground.
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1 Systems Engineering

Figure 1: Weighted mission score breakdown

1.1 Mission Requirement Analysis

The StanfordAIR team began it’s design process by analyzing the 2018 AUVSI competition rules in
detail. The following table summarizes the results of our analysis:

Task Analysis Tradeoffs

Timeline - 10% It appears that remaining in flight past the 45 minute mark is not a
significant point penalty. However, being forced to the back of the line
from using a timeout may result in the team losing its opportunity to
fly.

Autonomous Flight - 30% Most of the points here are given to capturing waypoints and flying
close to the waypoints, with a smaller fraction of points awarded to
being in-flight autonomously for 3 minutes. We lose 2.4% of our total
points each time we manually take over autonomous flight. This section
accounts for 18% of total points awarded.
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Obstacle Avoidance - 20% Stationary and Moving Obstacles are equally important, and avoiding
Stationary Obstacles is significantly easier so it makes more sense to
focus our efforts on avoiding stationary obstacles before working on
avoiding Moving Obstacles. However, these points are only awarded as
long as the airplane reports telemetry information, so the first priority
of our path planning/obstacle avoidance team

Object Detection - 20% The vast majority of points (80%), are awarded for autonomously de-
tecting, localizing, and submitting objects. A smaller fraction of points
are awarded for correct characterization of objects. This part of the
challenge accounts for 12% of total points awarded.

Air Delivery - 10% Air delivery accounts for 6% of the total point structure and it will be
difficult to time the opening of the water bottle precisely.

Operational Excellence - 10% The team must perform professionally and interact with other competi-
tors in a courteous manner.

1.2 Design Rationale

1.2.1 Environmental factors

Budget The first constraint StanfordAIR had to keep in mind was the amount of money we had to
spend. Our team had a budget of around $3,000, not including several in-kind donations of equipment.
We planned to spend around $1,000 on the aircraft, $1,000 on the imaging system, and save $1,000
for any miscellaneous expenditures we would encounter, such as building the launching system, power
distribution board, and air drop mechanism.

Equipment and Experience StanfordAIR is based out of Stanford’s premier drone interest group,
Stanford Unmanned Aerial Vehicle Engineers (SUAVE). The group has access to an electronics lab with
an array of equipment (soldering irons, oscilloscopes, function generators, digital multimeters). It also
has access to machining equipment (band saws, laser cutters, miter saws, belt-disk sanders).

The team’s most significant limiting factor in competing this year is it’s small size and lack of expe-
rience with AUVSI. Firstly, we are competing against many teams with dozens of people and decades
of experience with the AUVSI experience. StanfordAIR consists of only six undergraduate students and
one graduate student. We have backgrounds in Electrical Engineering, Computer Science, Mathematics,
and Aeronautics and Astronautics. This was our first year competing in AUVSI.

Unfortunately, this meant we spent a significant part of the beginning of the year familiarizing our-
selves with the rules of AUVSI and learning about the basic challenges of the competition. We used two
strategies to mitigate our team’s disadvantages. First, we leveraged our small team size to minimize time
spent on organizational matters, and did not have to deal with inactive team members. Both our limited
human and economic capital prevented us from doing extensive physical testing and experimentation,
but we made the best of this situation by quickly settling on a design and getting to software develop-
ment as quickly as possible. We never felt limited by money despite only spending a small fraction of
what established teams do. We also eventually learned to mitigate our team’s rookie status through a
thorough analysis of past AUVSI competitions, rulebooks, and other team’s submissions.

Mission Requirement Prioritization A quick analysis of the percentages of point breakdowns
reveals that 42% of total points are awarded for autonomy (autonomous path planning and computer
vision), or 70% of the total number of points awarded for mission performance overall. The other 30% of
mission performance points are given for completing the competition on time, air delivery, and operational
excellence.

This meant our team needed to produce a computer vision system, a path planning system, an
air delivery system, and a networking system to communicate between the other component systems. A
significant management decision the team made early on was to prioritize certain parts of the competition
above others. We knew that our small team size and relative inexperience with the competition would
mean that we could not reasonably expect to build a drone the same way a large team does.
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StanfordAIR needed to pick and choose what it wanted to do, and learn to do those tasks well.
Most of our team’s experience is in mathematics and computer vision, and a large fraction of points are
awarded for those tasks, so we decided to prioritize the autonomy stack of the drone over air delivery.
Thus, many of the design decisions we describe below were driven by autonomy, not air drops.

Design Decision Flow The first decision we made was selecting our aircraft. This was at the
suggestion of one of the members of SUAVE. We chose the Skywalker X8, a flying wing design, because
it was large enough to support the vision system, payload, computers, and the batteries required to fly
for the maximum mission time. A Skywalker X8 airframe was also already in the club inventory, saving
us money we were able to spend elsewhere on our UAS.

This decision led to our choice of flight controller: the PixRacer. As we mentioned in previous
paragraphs, the composition of our team and our skill-sets and interest in mathematics led us to focus
on creating our own path-planning algorithm and computer vision system. This made the choice of the
PixRacer easy because it worked well with the Skywalker X8 and easily received waypoints from our
path-planning algorithm running on a companion computer onboard. Additionally, numerous SUAVE
members have experience working with the PX4 autopilot software it runs.

Next, we chose our communication system. As we needed a long range system with high bandwidth
and high reliability, we decided to dedicate a significant amount of our budget here. We therefore selected
an industry grade radio system built by Airborne Innovation and Microhard. It was also crucial that
we were able to get the airborne half of the system, the Airborne Innovations Picoradio, at a discounted
educational rate. Most importantly, this radio system has a base range of 5 miles and a bandwidth
capable of transmitting the required imagery.

Our choice of camera was made very carefully. We chose the Z Cam E1. Since our radio is controlled
by a HTTP protocol, we chose a camera that could also be easily controlled by a HTTP protocol. We
determined that our computer vision algorithm needed a 4k video, with a 42 millimeter (mm) lens,
flying at 150 ft, in order to accurately recognize images. Fortunately, the Z Cam E1 met all of these
requirements.

To carry our camera, we designed our gimbal. We built multiple iterations of the design and ran
several trials to ensure that our camera would have the requisite stability to provide reliable test and
competition-time performance. See our gimbal section for more information on this.

Finally, we designed a laucher system that would allow our aircraft to take off autonomously inde-
pendent of terrain. This was especially important as we do not have access to an airstrip and our aircraft
is too large to hand launch.

2 Aircraft Design

2.1 Aircraft

As a first year team, Stanford AIR’s airframe and propulsion system selection process was motivated
heavily by cost, payload capacity and internal volume, and flight performance. Internal payload capacity
was defined by the need to carry a gimballed camera system, a companion computer module, flight
controls, droppable payload, and batteries. In addition to the physical volume of the components,
additional room was required to accommodate the components in a configuration with an acceptable
center of gravity. Additionally, in order to utilize the 45 minute competition flight window most effectively,
the team desired an aircraft propulsion system that would be capable of flying the fully-loaded aircraft
for a duration of more than 30 minutes, with a cruise speed of around 20 m/s. In Spring of 2017, an
unused Skywalker X8 airframe was donated to the Stanford UAV Club, and was quickly co-opted by
Stanford AIR for use as a competition airframe as it fit the criteria outlined above.

Upon receiving the airframe, the team began designing a propulsion system capable of flying the
aircraft with the 1-2kg of payload components. eCalc, an online propulsion system simulation and design
tool, was utilized in order to iterate through a number of propulsion systems until targets were met for
projected flight endurance and cruise speed. A 520 kV motor was chosen in conjunction with a 12”x8”
prop in order to boost propulsion system efficiency, since propulsive efficiency tends to be positively
correlated with propeller diameter and negatively correlated with motor kV. Propeller diameter was
limited to 12” by the geometry of the aircraft in order to avoid interference with the trailing edges of
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the wings, and propeller pitch was selected such that sufficient thrust would be provided at the target
20 m/s cruise speed and enough static thrust could be generated during launch.

Our mission aircraft is lovingly christened “ Shamu”for its resemblance to the legendary orca. This
is an aircraft originally designed for long range FPV flight with large payload capacity, which facilitates
the conversion to our search and rescue mission. Below is the information as well as a schematic for the
internal layout of the critical components.

Air Delivery Module

Power Module

Companion Module

Vision Module

Figure 2: Component layout and specifications

Airframe 32 x 82 x 8 (in)

Control FrSky Taranis X9D transmitter with X6R receiver in SBUS connection
with PixRacer autopilot running PX4 flight stack

Telemetry 915Hz mRobotics telemetry radio in communication with QGround-
Control

Radio 2.4GHz

Battery 2x 4S 6000mAh Lithium Polymer (LiPo)

Takeoff weight 7.5 lbs

Launcher Single rail catapult

Ground Station QGroundControl

QGroundControl was chosen for the setting and display of real-time mission critical information for
two reasons: first, it is the officially supported GCS for PX4 flight stack and also the official implementa-
tion for MAVLink; second, it offers the best reported user experience for establishing video transmission,
which is also an important mission component.

To enable fully autonomous operation, an aluminum catapult launcher is being constructed that is
safe, portable as well as easy to set up and use. It comprises of a carriage that holds securely onto
the wing root sections of the aircraft by a bracket, which has bearings that slide along the edge of a
12 in. long square rail with minimal friction. The launch force is provided by the elasticity of U/V
resistant latex tubes which are proven to be reliable for launching heavy R/C aircrafts. The tubes would
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Figure 3: The UAS and launcher design.

(a) Skywalker X8 ”Shamu”

12' x 2"x2" aluminum tube 

22x8 skateboard bearings

1/4" latex tubing

(b) Catapult launcher under construction

be tightly wounded between the end of the launch rail and the carriage. A safety pin would hold the
carriage with latex tubes in the stretched position, and can be disengaged at the user’s convenience
to initiate the launch. Once launched, the aircraft would detect the initial acceleration and initiate a
stabilized climbout. After mission objectives are accomplished, or mission time is up, the aircraft would
descend from a safe altitude to the specified landing spot.

2.2 Autopilot

Our Skywalker X-8 is controlled by a PixRacer v1.0 autopilot running the latest PX4 firmware, assisted by
an Intel Aero Compute Board. A successful calibration of the PixRacer renders our aircraft immediately
capable of autonomous waypoint capture, holding patterns, takeoff and landing. Our path planning
algorithm running on the Intel Aero Compute Board receive the coordinates and velocity of each obstacle
by connecting to the interop server over our radio link, and it plans a path defined by a series of geographic
coordinates. The algorithm then send these coordinates as waypoints via MAVLink to the PixRacer.
This functionality covers stationary obstacles, moving obstacles, and the coordinates for the air delivery.

In addition to the coordinates, the autopilot has two empty servo channels (because we are using
a flying wing design), which allows the the automatic air delivery functionality to be integrated. This
works by plugging the left and right servos of the delivery system to PixRacer. When the aircraft
reaches a waypoint a certain distance away from the drop zone, the autopilot triggers oscillations in the
passthrough channels, releasing the bottle.

2.3 Obstacle Avoidance

Obstacle avoidance is a large part of the AUVSI competition and one of the key focuses of our team. Due
to possible loss of communication with the ground station, we opted to compute the flight trajectories
on-board. This requires the path-planning and obstacle-avoidance algorithms to be fast enough that
embedded computation of such paths would be feasible.

To accomplish this, we made heavy use of heuristics and relaxations of the path-planning optimization
problem we are trying to solve. This worked well in practice. In particular, the global path-planning
algorithm we used can be broken down into three major steps:

1. Construct a graph approximation of the allowed airspace and remove all vertices of the graph which
pass through a static obstacle (essentially points through which the plane is not allowed to fly).

2. Construct a fast, graph-approximated path for the plane’s trajectory which avoids all time-dependent
moving obstacles based on the graph given in step 1.

3. Relax the fast approximation of step 2 into a smooth trajectory which satisfies all dynamical
constraints (e.g., minimum turning radius, maximum velocity, etc.) and pass this path to the
autopilot for execution.
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The latter two steps were completed in a loop that was recomputed every 100ms, while the former
was completed only once—during initialization of the plane. Since the trajectories computed were global
paths (i.e., complete trajectories, taking into account all objectives, waypoints, and obstacles known at
the time), this relatively slow update time appeared to be enough for the purposes of the mission.

The specific construction of each of these algorithms is defined in the following sections.

2.3.1 Construction of the fast graph approximations

The idea in this section is to construct a graph approximation of the allowed airspace such that distances
in the graph are close to distances in the original space. This initial step is useful since the continuous
optimization algorithm will usually take a long time to find a feasible starting trajectory given an arbitrary
initial path.

This good initial starting path is found by approximating the space in question as a graph (via, say,
vertices placed on a grid of points, with all neighboring vertices connected) and then removing all “
invalid”vertices which exist inside of known, static obstacles, as is given in step 1. If static obstacles
were the only cases of importance, we would run some simple shortest-path algorithm, and then continue
immediately to step 3 and run continuous optimization on this path.

In the dynamical obstacles case, a direct shortest-path solver is not enough to construct a feasible path,
since the problem of time-varying graphs with removed nodes is actually computationally-hard.1 On the
other hand, since most of the space does not include obstacles, there are several good, exact algorithms
which—while computationally expensive in the worst-case—perform quite well in practice: a variant of
A* with jump-point search2 which incorporates the idea of time-varying graphs (and, conversely, the
idea of time-varying obstacles) was constructed for this purpose and is fast enough to be computed on
the on-board computer used in the drone.

This complete algorithm then yielded a fast, feasible starting path (i.e., a path which does not intersect
any obstacle) for further refinement via continuous optimization.

2.3.2 Continuous path relaxation

Since the path given in the graph is a rough approximation, we required further refinement in order to
meet the dynamical constraints of the plane since, for example, the path returned by the above relaxation
does not necessarily meet the minimal turning radius constraint of the plane.

In order to accomplish this, we take the path returned in the graph approximation and map it back into
continuous space in order to use it as an initial starting point for minimizing a loss function (time taken)
which includes a set of hard constraints (e.g., avoiding time-varying obstacles, curvature constraints) on
the final solution.3 After applying some simple optimization algorithm (accelerated gradient descent),
using the above approximation as a starting trajectory, we exited when all constraints were met and the
algorithm failed to generate further improvements of the path.

The now-optimized path is a complete, globally-feasible trajectory which is locally optimal (with
respect to time taken). Since the planning can be done arbitrarily far in advance, the frequency at which
the trajectory needs to be recomputed is quite low, making this algorithm feasible for the embedded
computing environment on the drone.

2.3.3 Obstacle prediction

The task of obstacle prediction is, in the general case, quite difficult since it usually is a problem about
equilibria in games. We are given both moving and stationary obstacles to simply avoid—so the problem
reduces to the slightly simpler question of path inference.

In the specific case of the AUVSI–SUAS competition, we are also provided with the functional form
of the trajectories of the obstacles. Using a linear regression technique for fitting this functional form
worked surprisingly well.

In this case it was simply taking the last k-points of the known trajectory of the obstacle and using
a least-squares method to fit the weights of the functional forms. In other words, if we know that the

1I.e., this problem is NP-complete in the general case of existence of a path.
2http://users.cecs.anu.edu.au/ dharabor/data/papers/harabor-grastien-aaai11.pdf
3For the complete loss function, see https://guille.site/path-optimization-thoughts.html.
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obstacle follows a trajectory described by a function of the form

f(t; θ) =

[
θx0 + θx1 t+ · · ·+ θxnt

n

θy0 + θy1 t+ · · ·+ θynt
n

]
,

and, assigning a square loss to f(t; θ) for deviating from our observed trajectory of the obstacle p(ti) ∈ R2

at observation times {ti} yields that the complete optimization objective (for a single obstacle) is

`(θ) =
∑
i

‖f(ti; θ)− p(ti)‖22

which can be minimized extremely quickly and yields good accuracy with few observations.

2.4 Imaging System

The camera was chosen to meet the constraints of our object detection and classification system, which
are discussed below. After developing the architecture of our object detection algorithm, we determined
that we would need at least 50px/ft to see the smallest target on the ground. We also estimated that
we could safely complete the object recognition part of the competition in 20 minutes if we flew at an
altitude of 150ft. A few calculations were employed first to estimate how much resolution we would
roughly need.

Given an angle of view of 30◦ (Readily available at specialty lens stores), then each picture taken
would encompass 150ft∗ tan( 30◦

2
) ≈ 80ft, which would necessitate around 4000px to achieve our desired

ratio of 50px/ft. This horizontal ratio can be achieved with a standard 4K resolution video stream. We
considered the following cameras in our decision making process:

Camera Features Drawbacks

Sony QX10 This camera is extremely
lightweight and offers a high
16MP resolution. It is commonly
used in aerial mapping missions
and has an easy to use HTTP
interface and Python API.

It does not offer a high rate burst
shooting mode, nor does it let the
user interchange lenses.

ZCam E1 This popular camera is extremely
lightweight as well and offers a
well made HTTP Wi-Fi interface.
It also allows for interchangeable
lenses and 4K streaming.

Documentation on this camera is
rather weak and it’s not clear if it’s
been used in aerial mapping mis-
sions.

Sony R10C This camera is designed for aerial
mapping and automatically geotags
images.

Extremely costly

Canon Rebel EO1 A commonly used DSLR camera.
Does not offer a web interface, but
many methods have been developed
to allow users to take images off of
the camera while it is in operation.

The camera is expensive, and very
heavy (> 600grams).
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Our biggest constraining factor is weight. With this mind, we chose the ZCam E1 with a 14-42mm
Olympus Lens. The ZCam E1 has a 17mm x 13mm lens. Using the well known equation: FOV =
2 ∗ arctan( h

2f
), where h is the length of the sensor along the desired dimension, we computed the field of

view of the camera to be 22◦, which is smaller than the back-of-the-envelope calculations we completed
above. At a field of view of 22◦, we will be able to capture 67px per foot flying at 150ft.

To capture still images that meet our requirements, we constructed our own 2-axis gimbal around
the ZCam E1. The gimbal uses 2 brushless gimbal motors controlled by a SimpleBGC 8-bit controller
board. After careful calibration and PID tuning we are able to stabilize the camera in both the roll and
pitch axes. Furthermore we are looking at commanding roll angle to point the camera at off-trajectory
targets.

Figure 4: Test setup with ZCam E1 on prototype gimbal.

Vibration damping is still a big issue since the gimbal movements mostly compensates disturbances in
angular motion. Translational vibrations induced by the propulsion and aerodynamic forces are likely to
introduce oscillations in the camera frame and therefore jitter in the image, thus reducing the resolution
and effective number of pixels occupied by the targets. This requires the gimbal to be attached to the
airframe with dampers of the right stiffness, as illustrated by the CAD assembly.

2.5 Object Detection, Classification, Localization

2.5.1 Algorithms

Object detection is the first task of the computer vision system. After images are sent to the ground
computer, we run an OpenCV implementation of the SURF (Speeded Up Robust Features) algorithm
to detect shapes with likelihood of being standard objects. It serves as a blob detector, and after it’s
complete, we add bounding boxes around these detected blobs and crop them out of the larger image to
send down to the ground computer, where they will be further processed for emergent object search and
standard object classification. The centers of the blobs are geotagged using the telemetry measured at
the time of image capture and the pixel locations of the bounding boxes on the image.

The next challenge is to determine the images GPS coordinates once they have been found on the
screen. Given the GPS coordinates of the plane (xp, yp), its yaw (γ) and altitude (h), and the pixel
coordinates of the object (xo, yo), we used the following series of equations to determine the GPS
coordinates of the object. These equations assume that the gimbal is always pointing the camera vertically
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Figure 5: Original image
Figure 6: Image with bounding boxes after SURF

at the ground.

[
x′o
y′o

]
=


(

cw
2h arctan(FOVw

2
)

)
(xo − cw

2
)(

ch

2h arctan(
FOVh

2
)

)
(yo − ch

2
)


[
xgps
ygps

]
=

[
xp
yp

]
+

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x′o
y′o

]

Here, the vector

[
x′o
y′o

]
are the normalized coordinates of the objects in meters. cw and ch are the width

and height of the image in pixels. Finally

[
xgps
ygps

]
represents the GPS coordinates of the objects we

localize, which is the value we return to the interoperability server.
Once blobs have been separated from the image, we apply a series of filters before attempting clas-

sification. We decided to use k-means clustering to segment the color differences in blobs in order to
separate each into geometric shape and alphanumeric character. We use OpenCV to classify the color
of both the geometric shape and alphanumeric character based on the range the BGR values fall into.
Each of these segmented images are then binarized for easier classification analysis.

The binarized geometric shape is classified using an OpenCV implementation of contour analysis.
With this, we use the number of vertices, angles of vertices, and radian length of arcs in a geometric
shape to classify it into the appropriate shape. We have also developed a separated neural network
for classifying shapes, in case contour analysis fails during the competition. The binarized character is
cropped to 28x28 pixels and classified with a pretrained Convolutional Neural Network model. We used
the EMNIST dataset to train this network. EMNIST is a dataset consisting of uppercase and lowercase
handwritten alphabet characters and Arabic numerals. The Tensorflow implementation of this CNN had
three hidden layers using ReLU for their activation functions. The newly-proposed Adam loss function
was used to train the network, and the well-known Softmax function was used for the final output layer
for estimation of character. We chose to use TensorFlow as the framework for this stage since it is one
of the newest, most actively developed projects in the field of image recognition at the moment, and
provides a wealth of online documentation to train new users in the platform. Over the rest of our drone
development efforts, this training set of images will be built upon to improve our shape detecting neural
network and improve the accuracy of the results from this stage. The full architecture is as follows:
input layer ⇒ first convolution layer ⇒ first max-pooling layer ⇒ second convolution layer ⇒ second
max-pooling layer ⇒ third fully-connected layer: 1024 nodes ⇒ output layer. To generate probabilities
for each character, we use Tensorflow’s Tf.Estimator class. This estimator uses an implementation of
softmax to estimate the probabilities of a character falling into a given category out of 100%. Numbers
and capital letters, with ‘0’ and ‘O’ combined into one class, make up 35 distinct classes.
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Figure 7: Sample of generated dataset

After 12 epochs our augmented 35 class dataset, using 2000 instances of each class, training accuracy
was around 96% and testing accuracy was around 88%. As we test more on real data, we’ll need to
compare the train, validation, and test accuracies in order to to ensure that we’re not over-fitting the
dataset to the training data.

2.5.2 Datasets

Since there is no dataset readily available for the standard objects, we created our own datasets to train
the neural network on. We’ve also taken advantage of the EMNIST dataset, a subset of the NIST Special
Database 19, comprised of numeric and alphabetic characters.

We separated the challenge of creating objects that would be similar to standard objects we might
see in the field into three tasks: background generation, shape generation and placement, and character
placement. To generate backgrounds of 50x50 images that might look like the background of a field, we
scrubbed Google for aerial images of fields and gathered images from our flights and wrote a script that
saved 50x50 croppings of these images into a directory.

After doing this, we augmented our background image dataset using Keras’ rotate, skew, and noise-
adding data augmenting features. To generate shapes, we created a template of each of the shapes that
we’ve seen from the competition - circle, half circle, quarter circle, plus sign, star, triangle, and diamond.
(If we find that there are more shapes than those closer to the competition, designing shape templates
isn’t too difficult.) We then took 28x28 characters from the EMNIST dataset and placed them on the
shapes with random rotations and very small random translations from center. With this new image, we
used Keras to do random skewings in order to train for images received where the shape is not exactly
parallel to the camera. Here is a sampling of the dataset we constructed:

We placed each of these new images on a 50x50 background square image with randomly translated
from the center. This allowed us to place sample images on large background panes to test our SURF
algorithm. After using k-means to separate the shape from the character, we collected the resultant
binarized shape images and created a dataset for training a neural network to recognize shapes. We used
the character output from the k-means algorithm to train a separate neural network (described above)
to recognize the characters.

To recognize emergent objects, we gathered aerial images of humans and drew bounding boxes around
them to train the YOLO algorithm. We trained our emergent object dataset with Google’s Inception v3
dataset and used our collected images to augment that dataset.

2.6 Communications

The UAS has three wireless links with the ground. The first is the manual control link that connects the
RC transmitter to the plane. It is provided by an FrSky X6R 2.4 GHz SBUS receiver on the plane and
an FrSky X9D 2.4 GHz RC transmitter. This allows for direct manual control and override. The second
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link is bidirectional and provided by dual mRobotics SiK Telemetry Radios operating at 915Mhz. This
link was responsible for telemetry and parameter-uplink during development and remains a secondary
system for these tasks, providing redundant telemetry to the pilot and groundstation. The third link
is the primary connection between the UAS computers and the groundstation. This is provided by
an Airborne Innovations Picoradio 2.4 GHz OEM advanced datalink module onboard the UAS and a
Microhard pDDL2450 2.4 GHz OEM Ethernet & Serial Digital Data Link on the ground. This wireless
connection is effectively an ethernet bridge that allows the UAS to share a network with the groundstation
and directly query the interoperability network. All images are downlinked from the Intel Aero Compute
Board over this link as well, and it serves as the primary telemetry feed.

PixRacer

FrSky

X6R

Safety Pilot

ZCam E1

+ gimbal 

SBUS

manual 

toggle
FrSky
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Figure 8: Communication Block Diagram

2.7 Air delivery

As described in the autopilot section, the air delivery module will be activated autonomously by the
autopilot. The design is based on the fact that a standard 8oz. water bottle has a diameter of 2.25in.,
but naturally that could vary from company to company. Because of this, we designed the arms that
grip the water bottle to be adjustable.

The adaptability of the design results from the use of opposing servos connected by a Y-splitter cable.
Boomerang shaped arms made from balsa wood will sit atop of the servo arms, with their centroids sitting
about 2.25in. apart. By adjusting the trim the diameter of the circle can grow or shrink based on the
size of the bottle.

The module will be located in the nose of the aircraft in order to ensure that the center of gravity
location is not adversely affected. An opening as been cut on the bottom of the fuselage to allow the
bottle to drop without obstruction. Through significant testing, we have found that the bottle breaks
upon impact on the surface from most altitudes allowed for the competition, so no modification nor
attachments to the system are necessary.

2.8 Cybersecurity

UAVs used for missions involving a high level of risk require an impenetrable security system. If an
attacker were to somehow hijack a UAV during a dangerous and/or time-sensitive mission, the mission
could result in very undesirable consequences.
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There are several different ways a cyber attack on our UAS could take place. One of the most
vulnerable parts of our system is the communication between the ground station and the aircraft, where
there is a potential for the signal to be intercepted by other teams and spied on or even interfered
with. To combat this vulnerability, our primary communication link (between the Microhard pDDL and
Airborne Innovations Picoradio) operates with industry-standard 128-bit AES encryption, which in June
2003 was approved by the US government for the protection of classified information up to the SECRET
level. In order for an attacker to attempt to intercept data to or from the radio, the attacker would
first need to decrypt the encryption protocol we implemented, which is an obstacle that adds a layer of
impenetrability to our system.

Beyond the use of encryption, we control access to the UAS by requiring user authentication for both
the ground station and the onboard computer. Furthermore, we can limit the set of authorized devices
that are allowed to connect to our aircraft’s network, so that only MAC addresses we know to trust are
granted the ability to connect with the network.

While hardware exploits are perhaps the most likely, we also take precautions against personnel-level
attacks by limiting administrator access to all of our flight-critical systems. We have internal protocols
for password security and only team leads have access to all systems. These steps have been taken to
avoid both intentional and accidental leaks of critical security information by team members.

If all of these security measures fail, we can switch to manual flight mode. We have maintained the
maximum possible separation between the autonomous and backup manual flight controls so as to limit
the ability of an attacker to compromise both systems simultaneously.

3 Safety, Risks, & Mitigations

3.1 Developmental Risks and Mitigation

Our lack of prior experience with the AUVSI competition made it especially important for us to pay
attention to the dangers associated with developing a competitive aircraft. The following table summa-
rizes the risks we anticipated during development, our assessments of their likelihood and impact, and
our approaches to mitigating them.

Risk Likelihood Impact Mitigation

Electrical High Low When soldering and working with parts that reached high
temperatures in routine usage (like the picoradio), we
made sure to always have at least two people in the room
and burn treatment nearby.

Team Morale Medium Medium Since our team is small, each member had to do a signif-
icant amount of work, risking burnout. We made sure to
foster a supportive team environment to prevent this issue
from arising.

Machining Low High Usage of the laser cutter, welding tool, and other machin-
ing equipment is extremely dangerous, especially without
safety training. Through partnership with the Stanford
Product Realization Lab and safety leaders in the greater
SUAVE community, we ensured that we minimized the
danger to all members of our team working with these
tools.

Non-standard
Approach

Medium Medium Our use of non-standard approaches to the path-planning
and computer vision algorithms/systems could lead to cru-
cial part of our aircraft not functioning properly. We miti-
gated this risk by starting these parts of our project at the
beginning of our design process and testing each module
frequently as we built the system up.
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3.2 Mission Risks and Mitigations

Operational safety is a key part of the AUVSI competition. StanfordAIR decided to approach drone
safety using best practices from SUAVE (StanfordAIR’s parent organization). The table below describes
the risks we could possibly run into, and descriptions for how we mitigated those issues:

Risk Likelihood Impact Mitigation

Airplane
crashes dur-
ing test

Low Medium We ensured that the safety pilot always had a spotter
trained in hobby drone flight at test flights to ensure all
safety procedures were followed carefully and to double
check all flight-critical systems. The safety pilot logged
dozens of hours on the plane and completed a variety of
disaster simulation training, including stall training and
landing without power. Finally, we flew our drone in a
designated UAV zone, over a mile away from the popu-
lated Stanford campus center.

Malfunction
during launch

Low High A malfunction during launch has real potential to harm
team members observing the flight. We remembered to
spend significant time before flights discussing launch pro-
tocol and going over safety instructions of launches.

Loss of com-
munications
during au-
tonomous
mode%

Medium Medium The Pixhawk has a built in ‘loiter’ functionality to circle
a certain spot in the air if it loses communication with the
remote control. The drone is also programmed to conform
to the competition’s safety protocols.

Airplane
servo mal-
function

Low High The drone is inspected for mechanical integrity before ev-
ery flight.

Competition
rule violation

Low High A dedicated team member read the rules book in details
and made notes of the interesting points. This team mem-
ber is the point person for rules related issues and educated
the rest of the team on AUVSI rules and norms.

4 Conclusion

Our main goals upon entering this competition for the first time were to successfully make it to the
competition, minimize costs to show that the mission can be accomplished at a reasonable price, and
take an original approach to path planning and computer vision. We are very proud that our small team
was able to accomplish all of these goals for this year’s competition and are excited to see how next year’s
Stanford team will build upon the foundation we have set. Making it to competition required extensive
testing and our team learned a lot through the iterative design process, both in regards to the technical
expertise that specific sub-teams developed and the process of integration and project management
required to put everything together. Accomplishing all of this on a limited budged was accomplished
with thoughtfulness, frugality, a well-reasoned design decision flow, and generosity of industry partners.
Finally, our original approaches to computer vision and path planning were accomplished through the
tireless effort and dedication of our team members. Overall, we are excited to compete and learn from
our experience, and look forward to improving over many future years participating in the competition.
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